Product Description
Name: | citroen peugeot tensioner bearing vkm131.05 | OE | 829.54 | OE | 97535.1 | OE | 96281179 | INABEARING | F-121287.5 |
Applicable Automobiles:
CITROEN AX (ZA-_) 1986/07-1998/12
CITROEN BERLINGO / BERLINGO FIRST Box (M_) 1996/07-2011/12
CITROEN XSARA (N1) 1997/04-2005/12
PEUGEOT 106 I (1A, 1C) 1991/08-1996/04
PEUGEOT 205 I (741A/C) 1983/02-1987/10
PEUGEOT 306 (7B, N3, N5) 1993/04-2003/10
PEUGEOT (DF-PSA) 206 2005/12-2009/02
Other items you may interested
Info | Vehicle | INA | Gates |
Belt Tensioner | Ford Mondeo 2.0, 2.2 TDCI 2000-07 | 534016910 | T38354 |
Tensioner pulley | Ford Transit 2.4 2000-06 | 53405710 | T38431 |
Deflection / Xihu (West Lake) Dis. pulley | Ford Transit 2.4 2000-06 | 532044910 | T36186 |
Deflection / Xihu (West Lake) Dis. pulley | Mercedes, VAG 2.5, 2.7, 3.0 TD 1997- | 532016571 | T38099 |
Tensioner pulley | VAG 1.9 TDI 2000-04 | 534001410 | T38306 |
Tensioner pulley | Mercedes C200, C220, C230 2000- | 533001710 | T38415 |
Xihu (West Lake) Dis. pulley set | Citroen, Peu 1.9D, 2.0 HDI 98-05 (2 piece set) | 530044009 | |
Tensioner pulley | Citroen, Peu 1.1, 1.4 1996- | 53157110 | T43571 |
Deflection / Xihu (West Lake) Dis. pulley | GM, SAAB 1.9 CDTi 2004- | 532 0571 1 | T36260 |
Tensioner pulley | Citroen, Peu 2.0 HDI 1999- | 534011571 | T38392 |
Tensioner pulley | VAG 1.9 TDI 2000- | 534013230 | T38307 |
Tensioner pulley | Citroen, Peu 1.4, 1.6 HDi 2002- | 53405710 | T38331 |
Tensioner pulley | Citroen, Peu 1.9D, 2.0 HDI 20002- | 534011120 | T38236 |
Deflection / Xihu (West Lake) Dis. pulley | Renault 2.5D -1998 | T41234 | |
Tensioner pulley | Ford, Mazda, Volvo 1.25, 1.4, 1.6 all 16V 2001- | 531058610 | T43127 |
Deflection / Xihu (West Lake) Dis. pulley | Ford various engines 1995-02 | 532050110 | T36175 |
Deflection / Xihu (West Lake) Dis. pulley | Ford 1.8 DI, TDDI, TDCI 1999- | 5325711 | T36089 |
Tensioner pulley | Rover 1.4, 1.6 16V K series 1995- | 53105710 | T41169 |
Tensioner pulley | VAG 1.9 TDI 1996-01 | 534014030 | T38387 |
Tensioner pulley | GM Astra 1.6 16V 2004-, Vectra 1.8 16V 2005- | 534014710 | T38433 |
Tensioner pulley | GM Vectra 1.9 CDTI 2004-2008 | 534571110 | T39017 |
Q:What’s your after-sales service and warranty?
A: We promise to bear the following responsibilities when defective products were found:
1.12 months warranty from the first day of receiving goods;
2. Replacements would be sent with goods of your next order;
3. Refund for defective products if customers require.
Q:Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to worldwide customers, we also customize OEM box and packing as your requirements.
Q:What’s the MOQ?
A: MOQ is 10pcs for standardized products; for customized products, MOQ should be negotiated in advance. There is no MOQ for sample orders.
Q:How long is the lead time?
A: The lead time for sample orders is 3-5 days, for bulk orders is 5-15 days.
Q:Do you offer free samples?
A: Yes we offer free samples to distributors and wholesalers, however customers should bear freight. We DO NOT offer free samples to end users.
Q:How to place order?
A: 1. Email us the model, brand and quantity,shipping way of bearings and we will quote our best price for you;
2. Proforma Invoice made and sent to you as the price agreed by both parts;
3. Deposit Payment after confirming the PI and we arrange production;
4. Balance paid before shipment or after copy of Bill of Loading.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Free Repair |
---|---|
Warranty: | 50000 Km |
Type: | Tensioner Bearing |
Material: | Chrome Steel/Gcr-15 |
Tolerance: | P5 |
Certification: | ISO9001, TS16949 |
Samples: |
US$ 0/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What are the reliability and durability aspects of drive belt tensioners in ensuring consistent tension?
Reliability and durability are crucial aspects of drive belt tensioners in ensuring consistent tension within a vehicle’s belt system. Drive belt tensioners play a vital role in maintaining the proper tension of the drive belt, which is essential for reliable power transmission and preventing belt slippage. Here’s a detailed explanation of the reliability and durability aspects of drive belt tensioners in ensuring consistent tension:
- Material Selection:
- Design and Engineering:
- Load and Tension Capacity:
- Resistance to Environmental Factors:
- Maintenance and Service Life:
The choice of materials used in manufacturing drive belt tensioners significantly impacts their reliability and durability. Tensioners are typically constructed using high-strength materials such as steel, aluminum, or reinforced polymers. These materials provide the necessary strength, rigidity, and resistance to wear and fatigue. The selected materials should be able to withstand the forces and loads experienced during operation without deformation or premature failure, ensuring long-term reliability and consistent tensioning performance.
The design and engineering of drive belt tensioners are critical factors in ensuring their reliability and durability. Tensioners need to be designed to accommodate the specific requirements of the belt system and driven components. This includes considerations such as belt routing, tensioner mounting, and the integration of features like pulleys, bearings, and damping mechanisms. Well-designed tensioners undergo rigorous testing and analysis to ensure they can withstand the anticipated loads, vibrations, temperature variations, and other operating conditions. Proper engineering practices contribute to the longevity and consistent performance of the tensioner throughout its service life.
Reliability and durability of drive belt tensioners are closely linked to their load and tension capacity. Tensioners must be capable of applying and maintaining the proper tension on the drive belt, ensuring it remains properly engaged with the pulleys. The tensioner should be designed with a suitable load capacity to handle the anticipated forces and loads imposed on the belt system during various operating conditions. Adequate load and tension capacity prevent excessive belt deflection, slippage, or premature wear, ensuring consistent tension and reliable power transmission.
Drive belt tensioners are exposed to various environmental factors that can impact their reliability and durability. Factors such as temperature variations, moisture, dirt, and chemical exposure can affect the performance and lifespan of the tensioner. To ensure consistent tension, tensioners are often designed with protective coatings, seals, or materials that offer resistance to these environmental elements. Proper sealing and corrosion-resistant materials minimize the risk of contamination or degradation, ensuring the tensioner’s long-term reliability and consistent tensioning capability.
Regular maintenance and adherence to recommended service intervals are essential for preserving the reliability and durability of drive belt tensioners. Tensioners should be inspected periodically for signs of wear, damage, or misalignment. Proper lubrication of moving parts, such as pulleys and bearings, is also crucial for their longevity and consistent performance. Following the manufacturer’s recommended maintenance procedures and replacing worn or damaged tensioners in a timely manner helps ensure that the tensioner maintains its reliability and consistent tensioning function throughout its expected service life.
In summary, the reliability and durability aspects of drive belt tensioners are crucial in ensuring consistent tension within a vehicle’s belt system. Material selection, design and engineering practices, load and tension capacity, resistance to environmental factors, and proper maintenance all contribute to the reliability and longevity of tensioners. By choosing well-designed and properly maintained tensioners, automotive systems can benefit from consistent belt tension, reliable power transmission, and minimized risks of belt slippage or failure.
How do innovations and advancements in drive belt tensioner technology impact their use in modern vehicles?
Innovations and advancements in drive belt tensioner technology have significantly impacted their use in modern vehicles, leading to improved performance, reliability, and overall efficiency. These advancements have resulted in the development of more sophisticated and efficient tensioner designs that address the evolving needs of modern automotive systems. Here’s a detailed explanation of how innovations and advancements in drive belt tensioner technology impact their use in modern vehicles:
- Enhanced Belt Control:
- Increased Durability:
- Improved Efficiency:
- Integration with Advanced Systems:
- Diagnostic Capabilities:
New technologies and innovations have allowed for improved belt control in modern drive belt tensioners. Tensioners now feature advanced damping mechanisms, such as hydraulic or pneumatic dampers, that help minimize belt vibrations and reduce noise. These innovations result in smoother operation and increased comfort for vehicle occupants. Additionally, advancements in tensioner design have improved the ability to maintain consistent belt tension over a wide range of operating conditions, ensuring optimal power transmission and reducing the risk of belt slippage.
Advancements in materials, manufacturing techniques, and engineering have led to increased durability and longevity of drive belt tensioners. Modern tensioners are often constructed using high-strength materials, such as reinforced polymers or advanced metals, that can withstand higher loads and resist wear and fatigue. This increased durability means that tensioners can reliably operate for longer periods between maintenance or replacement intervals, reducing the overall cost of ownership and improving the reliability of the vehicle.
Innovations in drive belt tensioner technology have contributed to improved efficiency in modern vehicles. Tensioners now incorporate features like automatic tension adjustment or self-adjusting mechanisms that optimize belt tension based on operating conditions. This ensures that the belt is neither too loose nor too tight, reducing energy losses due to belt slippage or excessive drag. By maintaining the optimal tension, modern tensioners help improve the efficiency of driven components, such as the alternator or air conditioning compressor, resulting in reduced fuel consumption and improved overall vehicle efficiency.
Modern vehicles often incorporate advanced systems and components that rely on the drive belt system, such as hybrid powertrains or electrically driven accessories. Innovations in tensioner technology have facilitated the integration of these advanced systems by accommodating the additional requirements and loads. For example, tensioners designed for hybrid vehicles may incorporate features to handle the higher forces associated with electric motor assistance. This integration ensures proper operation and reliability of the entire system, allowing for the seamless functioning of modern automotive technologies.
Some modern drive belt tensioners are equipped with diagnostic capabilities that can monitor their performance and detect potential issues. These advanced tensioners may include sensors or integrated electronic modules that can provide real-time data on belt tension, temperature, or other parameters. This information can be utilized by the vehicle’s onboard diagnostic systems to alert the driver or service technician of any abnormalities or impending failures. Diagnostic capabilities enhance the overall maintenance and reliability of the tensioner system, allowing for proactive repairs or replacements before major failures occur.
In summary, innovations and advancements in drive belt tensioner technology have had a profound impact on their use in modern vehicles. Enhanced belt control, increased durability, improved efficiency, integration with advanced systems, and diagnostic capabilities are some of the key benefits resulting from these advancements. As automotive systems continue to evolve, drive belt tensioners will likely continue to be refined and optimized to meet the demands of modern vehicles, ensuring efficient power transmission, reduced maintenance requirements, and improved overall performance.
Are there specific designs of drive belt tensioners for different vehicle makes and models?
Yes, there are specific designs of drive belt tensioners that are tailored for different vehicle makes and models. The design of a drive belt tensioner can vary depending on the specific requirements and specifications of the vehicle’s engine system. Here’s a detailed explanation of how drive belt tensioner designs can differ for different vehicle makes and models:
- Mounting Bracket and Pulley Configuration:
- Tensioner Arm or Pulley Geometry:
- Tensioner Spring Characteristics:
- Material Selection and Construction:
The mounting bracket and pulley configuration of a drive belt tensioner can vary based on the layout and space constraints of the engine compartment in different vehicle makes and models. The tensioner’s mounting bracket is designed to fit the specific mounting points in the engine, ensuring proper alignment and installation. The pulley configuration, including the number and arrangement of pulleys, may also differ to accommodate the routing and arrangement of the drive belt in the particular vehicle.
The geometry of the tensioner arm or pulley can be optimized for a specific vehicle make and model. The shape, length, and angle of the tensioner arm or pulley may differ to ensure proper belt contact and tensioning in the specific engine system. These design adjustments are made to ensure optimal belt performance, minimize wear, and reduce the risk of belt slippage or noise under different operating conditions.
The characteristics of the tensioner spring can be customized for different vehicle applications. The spring’s stiffness, preload, and rate can be optimized to provide the appropriate tension for the specific drive belt system. These adjustments take into account factors such as the length and width of the belt, the power requirements of the driven components, and the operating conditions of the vehicle. The tensioner spring design ensures that the belt maintains the proper tension throughout the lifespan of the vehicle.
The material selection and construction of drive belt tensioners can vary based on the specific vehicle make and model. Different manufacturers may choose materials such as cast iron, steel, or aluminum for the tensioner body and components, depending on factors like durability, weight, and cost considerations. The construction techniques and quality control measures may also differ to meet the specific standards and requirements of the vehicle manufacturer.
In summary, drive belt tensioners are designed with specific considerations for different vehicle makes and models. The mounting bracket and pulley configuration, tensioner arm or pulley geometry, tensioner spring characteristics, and material selection can vary to ensure optimal performance, proper belt tension, and compatibility with the engine systems of specific vehicles. These design variations ensure that the drive belt tensioners are tailored to the specific requirements and specifications of different automotive applications.
editor by CX 2024-04-12
China Standard Timing Belt Tensioner Bearing Idler Pulley Kit Assembly 13505-67040 Vkm71014 for CZPT 4 Dyna Hiace Hilux with Best Sales
Product Description
BASIC INFORMATION
Description | Timing Belt Tensioner Bearing Idler Pulley Kit Assembly 13505-67040 VKM71014 for CZPT 4 Dyna Hiace Hilux | |
Size | Diameter 62mm / Width 28.5mm | |
OE Number | 13505-67040 / VKM71014 | |
Brand | SI, PPB | |
Weight | 0.460 Kgs | |
Place of Origin | ZHangZhoug, China | |
Certification | ISO9 KAVO PARTS : DTE-9034 NSK-RHP : 62TB0629B06 RPK : RPK5714 SK : SK 04 TRIPLE FIVE : 050E1529.1 TRIPLE FIVE : 13505-0L030 TRIPLE FIVE : RKT1617 |
AUTOKIT : RKT1617 BREDA LORETT : TDI5163 DAYCO : ATB2266 GATES : Z85711 HUTCHINSON : HTG 262 INA : IPD : 14- 0571 KM International : FI7770 QUINTON HAZELL : QTT1125 RUVILLE : 56939 SKF : VKM 71014 TRIPLE FIVE : 13505-0L000 TRIPLE FIVE : 355715 |
APPLICABLE CAR MODELS
Car Models | Year | Engine | Displace | Power | Type |
FIAT SCUDO (270_, 272_) 2.0 D Multijet 4×4 | 2011- | RH02 | 1997 | 94 | MPV |
TOYOTA 4 RUNNER (_N18_) 3.0 Turbo-D | 1995-2002 | 1KZ-T | 2982 | 92 | Closed Off-Road Vehicle |
TOYOTA DYNA Platform/Chassis (KD_, LY_, _Y2_, _U3_, _U4_) 2.5 D4d (KDY220_, KDY230_) | 2001- | 2KD-FTV | 2494 | 65 | Platform/Chassis |
TOYOTA DYNA Platform/Chassis (KD_, LY_, _Y2_, _U3_, _U4_) 2.5 D4d (KDY230, KDY250) | 2001- | 2KD-FTV | 2494 | 75 | Platform/Chassis |
TOYOTA DYNA Platform/Chassis (KD_, LY_, _Y2_, _U3_, _U4_) 3.0 D4d | 2009- | 1KD-FTV | 2982 | 100 | Platform/Chassis |
TOYOTA DYNA Platform/Chassis (KD_, LY_, _Y2_, _U3_, _U4_) 3.0 D4d (KDY22_, KDY23_, KDY25_, KDY26_) | 2006- | 1KD-FTV | 2982 | 106 | Platform/Chassis |
TOYOTA DYNA Platform/Chassis (KD_, LY_, _Y2_, _U3_, _U4_) 3.0 D4d (KDY261_, KDY251_, KDY231_, KDY221_) | 2006- | 1KD-FTV | 2982 | 80 | Platform/Chassis |
TOYOTA FORTUNER (_N5_, _N6_) 2.5 D-4D 4WD (KUN50) | 2009-2015 | 2KD-FTV | 2494 | 75 | Closed Off-Road Vehicle |
TOYOTA FORTUNER (_N5_, _N6_) 2.5 D-4D 4WD (RZN215, KUN50) |
2011-2015 | 2KD-FTV | 2494 | 106 | Closed Off-Road Vehicle |
TOYOTA FORTUNER (_N5_, _N6_) 3.0 D 4WD (KUN51) | 2004-2015 | 1KD-FTV | 2982 | 120 | Closed Off-Road Vehicle |
DETAILED IMAGES
PACKAGING & SHIPPING
Packaging Details | 1 piece in a single box 20 boxes in a carton 30 cartons in a pallet |
Nearest Port | ZheJiang or HangZhou |
Lead Time | For stock parts: 1-5 days. If no stock parts: <500 pcs: 15-30 days ≥500 pcs: to be negotiated. |
OUR SERVICES
– We have more than 20 years experience in auto bearings fields.
– Excellent quality control is 1 of our main principles
– We offer OEM service, accept customer label, develop the product with your drawings or samples
– Any questions will get response within 24 hours.
FAQ
- How do you make our business long-term and good relationship?
– We keep good quality and competitive price to ensure our customers benefit ;
– We respect every customer as our friend and we sincerely do business and make friends with them,
no matter where they come from.
- Do you test all your goods before delivery?
– Yes, we have 100% test before delivery
What is your terms of payment?
– T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages
before you pay the balance.
Types of V-Belts and Their Properties
A v-belt’s inside length and pitch are determined by measuring along the bottom side. The included angle of a v-belt is measured from its flanks when it is extended. Most v-belt sections are 40 degrees. There are different types of v-belts, and the dimensions of each are standardized by different organizations. This article will introduce the different types of v-belts and their properties.
Notched v-belts reduce bending stress
Notched V-belts reduce bending stress by reducing the axial length of the belt by 2 or more notches. These notches are characterized by different profiles, which differ in the pitch angle and the inside length. ISO and DIN standards are followed by the manufacturers of these belts. Notched v-belts are used on industrial machinery in countries other than the US.
Compared to the standard V-belts, notched ones are designed to resist bending stress better and offer better heat dissipation. They also last longer and run cooler than standard V-belts. Furthermore, they are about 2 percent more energy efficient than their standard counterparts. Therefore, notched V-belts are a viable replacement for standard V-belts.
Notched V-belts are commonly used in industrial applications because of their low price, ease of installation, and availability of many sizes. Another advantage of notched V-belts is that they provide more wedging force and higher load capacity. Notched V-belts have a wider v-groove than flat ones, which makes them more effective for heavy-duty applications.
Notched V-belts also provide better traction. They reduce bending stress, which is beneficial for preventing fatigue and tearing of v-belts. Additionally, v-belts can be installed in an existing equipment to add more performance. And with proper maintenance and installation, notched V-belts will provide trouble-free service for many years to come.
Ribbed v-belts reduce heat dissipation
Various kinds of v-belts are available for varying applications. The more popular types are the fractional horsepower and the double-V. Fractional horsepower v-belts are designed for light-duty applications, such as machine shop equipment and household appliances. The common sectional names are 2L, 3L, 4L, and 5L. The L in each of these belts refers to the top width of the belt, multiplied by 1 eighth inch.
Unlike conventional belts, ribbed v-belts are flexible, making them ideal for use in vibrating loads. They reduce heat dissipation and can be ordered in single or multiple sets to match your application. However, ribbed v-belts should not be mounted on deep-groove sheaves, as this can cause the belt to turn over. If you use deep-groove sheaves, the risk of rupture is very high. Deep-groove sheaves can also cut banded belts. Extremely worn sheaves can also cause the belt to rip.
The 2 types of ribbed v-belts differ in their construction and application. While both types have trapezium cross-sections, they are similar in that they are made of polyurethane or other durable materials. Ribbed v-belts have an additional layer of fabric on the elastomer core for reduced noise and better heat dissipation.
Ribbed v-belts are available in a variety of sizes, including trough v-belts. Their cross-sections are categorized by their top and bottom widths and depths. The included angle of most v-belt sections is approximately 40 degrees. Different types of v-belts have different cross-sections, and these cross-sections are standardized by various organizations.
As the load increases, a ribbed v-belt will wedge into the groove and decrease the amount of friction needed to maintain the correct torque. Flat belts can track off the pulleys due to friction. However, V-belts are more stable and require less width than flat belts. The main advantage of ribbed v-belts is their increased efficiency.
The global-local finite-element model is also used to calculate the maximum and minimum J-integrals during a belt’s running cycle. The data is then used to evaluate the durability of ribbed v-belts in various applications. The numerical models used for the calculations involve a ribbed V-belt with 5 full ribs.
Cogged v-belts increase lateral rigidity to reduce belt whip
Cogged v-belts are designed for maximum performance and durability on even the harshest drive systems. These belts are made from high-modulus polyester cords that resist hardening and stretch and provide superior balance and strength. They also feature raw-edge sidewalls to reduce slip and drive vibration. In addition, they have specially-formulated rubber compounds for oil resistance. CZPT Cog-Belt offers substantial savings in downtime, energy consumption and horsepower.
A double cogged v-belt combines the benefits of cogged and double vee-belts. Its bonded reinforced tie band offers enhanced flexibility and reduces belt whipping in multiple-belt drives. Double cogged v-belt dimensions vary depending on the standards of the manufacturer. Regardless of the type, you’ll want to use a belt that is aligned correctly.
Standard v-belts are also known as wrapped or raw edge v-belts. Wrapped V-belts feature fabric covers above and beneath the cord to increase lateral rigidity and reduce belt whip. Cogged V-belts also have fabric covers to prevent wear on the core and increase the belt’s operating temperature. They’re ideally suited for applications that require high-temperature operation.
Cogged V-belts can significantly decrease energy consumption and improve power transmission capabilities. They also have a bias-cut cover stock that provides axial and lateral stability while preserving the cord integrity. A fiber loaded cogged construction offers optimum flexibility while minimizing heat buildup. It can be installed on any type of drive, including chain conveyors and industrial-grade machines.
The two-layer tie-band permanently bonds multiple belts together. This provides maximum cord support, heavy shock absorption, and stability. The belts are also engineered with patented banding processes that eliminate belt turnover and distribute load evenly across the drive. CZPT Cog-Band Belts minimize belt whip and provide stability. They also minimize belt turnover and rollover in heavy-duty industrial applications.
A classic v-belt is the most common and economical belt. Its nominal dimensions are 1/2″ to 1-11/2″ wide and 16″ to 400 inches long. The width is usually 40 degrees. Different organizations use different cross-sections to classify v-belts. The following table provides a general comparison of the 2 types. The Cogged V-Belt is designed to reduce belt whip by increasing the lateral rigidity of the belt.
Cogged v-belts provide superior environmental resistance
The patented design of the Dayco V-Belt provides maximum power transmission while combining the benefits of a cogged belt and raw-edge construction. The belt’s top cogged design helps increase air flow around it, preventing deterioration and extending its useful life. The belt’s three-ply design features neoprene impregnated fabric for superior durability and a specially-formulated polyester cord for increased strength and stability.
A variety of v-belts are available, with cogged and notched versions presenting unique characteristics. Cogged V-belts are more flexible than uncogged versions and feature ‘X’-shaped grooves for enhanced heat dissipation. Cogged V-belts are interchangeable with conventional v-belts, although their ‘X’ design is most common. Hexagonal v-belts are a popular option for applications where traction is needed.
Another type of Cogged V-belt is designed specifically for outdoor power equipment. This v-belt is brown, with smooth clutching covers. Its aramid cord is very strong and provides superior durability in adverse conditions. Cogged V-belts can withstand severe shock loads and are therefore ideal for outdoor power equipment. Furthermore, they offer superior environmental resistance, minimal stretch, and a long service life.
A Cogged V-belt is composed of tensile cords that are supported by a rubber stock. Different manufacturers use different synthetic rubber stocks for this purpose. These materials help to extend the belt’s operating temperature range and resist premature failure. In addition to tensile cords, the belt’s body is covered with a fabric cover. The fabric is treated to form a chemical bond with the core materials, which allows it to withstand constant bending.