Tag Archives: engine bearing

China Good quality CZPT Genuine Engine Quality Parts 2974172 3691280 Belt Tensioner Ribbed Belt Bearing Tensioner drive axle

Product Description

Product Description

Product name Belt Tensioner Pulley
Engine model QSX15  ISX15
Part number 3691280 315711 3681581  3681635
MOQ 1 PCS
Packing details Original packing
Delivery time 2~3days

 

Detailed Photos

 

Product Parameters

Product Name:

Genuine Diesel Engine Parts ISX15 QSX15 Fan Belt Tensioner Pulley 315711

Engine Model:

ISX15 QSX15 

Part/No.:

3691280 315711

Condition:

New

Application:

Marine Engine, Fishing Boat Engine,Construction Engine ,Generator Set, Mining Engine,Etc.

Warranty

6 Months

Certificate:

TS16949 ,(CCS, DNV, GL, LR, ABS, BV, NK, KR.)

Packing

Neutral ,genuine ,customized packing paper package,wodden packing

Shipping

DHL/FEDEX/UPS/TNT/ARAMEX, AIR & SEA

Delivery Time:

1-7 Days

Payment:

L/C,D/A,D/P,T/T

Our Advantages

1. GUARANTEED QUALITY
Materials with good quality are selected and tested layer by layer.
2. GOOD SERVICE
We have enthusiastic and timely online service and good after-sales service.
3. PROFESSIONAL TEAMS
We have professional teams with technology, research and production.
4. COMPETITIVE PRICE
We provide customers with better products and preferential prices.
 
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Conditions
of Use:
Land Use
Usage: Standby Unit, Common Units
Output Type: AC Three Phase
Cooling
Method:
Water Cooling
Installation
Method:
Fixed
Generator
Type:
Diesel Generator
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

timing belt tensioner

What role do materials and coatings play in the performance and longevity of drive belt tensioners?

Materials and coatings play a crucial role in the performance and longevity of drive belt tensioners. The selection of appropriate materials and the application of suitable coatings contribute to the overall durability, reliability, and functionality of the tensioners. Here’s a detailed explanation of the role that materials and coatings play in the performance and longevity of drive belt tensioners:

  • Material Selection:
  • The choice of materials used in manufacturing drive belt tensioners is critical for their performance and longevity. Tensioners are typically constructed using high-strength materials such as steel, aluminum, or reinforced polymers. These materials provide the necessary strength, rigidity, and resistance to wear and fatigue. The selected materials should have sufficient tensile strength to withstand the forces and loads experienced during operation without deformation or premature failure. Using high-quality materials ensures that the tensioners can maintain the desired tension level and resist wear, contributing to their long-term performance and longevity.

  • Coatings and Surface Treatments:
  • Coatings and surface treatments applied to drive belt tensioners offer several benefits for their performance and longevity. These coatings provide protection against environmental factors, reduce friction, and enhance the durability of the tensioners. Some common coating options include:

    • Corrosion-resistant Coatings: Tensioners are often exposed to moisture, chemicals, and other corrosive elements. Applying corrosion-resistant coatings, such as zinc plating or electrocoating, helps protect the tensioner from rust and corrosion, extending its lifespan.
    • Lubricious Coatings: Coatings with low friction properties, such as PTFE (polytetrafluoroethylene) or molybdenum disulfide, can be applied to reduce friction between the tensioner and the drive belt. This helps minimize wear and heat generation, enhancing the tensioner’s performance and longevity.
    • Wear-resistant Coatings: Tensioners can experience wear due to constant contact and friction with the drive belt. Applying wear-resistant coatings, such as hard chrome or ceramic coatings, can increase the tensioner’s resistance to wear and extend its service life.
    • Noise and Vibration Damping Coatings: Some coatings, such as rubberized or elastomeric coatings, can provide noise and vibration damping properties. These coatings help reduce noise and vibrations generated by the tensioner, improving overall drive system performance and passenger comfort.
  • Impact on Performance:
  • The choice of materials and coatings directly affects the performance of drive belt tensioners. Suitable materials with high strength and durability ensure that the tensioner can withstand the forces and loads imposed during operation without failure or excessive deflection. Coatings and surface treatments minimize friction, wear, and corrosion, optimizing the tensioner’s performance and ensuring consistent tensioning capability. By reducing friction and wear, materials and coatings can also contribute to improved power transmission efficiency and reduced energy losses in the belt drive system.

  • Longevity and Reliability:
  • The use of appropriate materials and coatings enhances the longevity and reliability of drive belt tensioners. Proper material selection and the application of protective coatings extend the tensioner’s service life by minimizing wear, corrosion, and degradation. Materials and coatings that resist environmental factors and maintain their performance characteristics over time ensure the longevity and reliability of the tensioner, reducing the risk of premature failure or the need for frequent replacements.

In summary, materials and coatings play a vital role in the performance and longevity of drive belt tensioners. The selection of high-quality materials with adequate strength and the application of suitable coatings contribute to the tensioner’s durability, reliability, and functionality. Coatings provide protection against corrosion, reduce friction, minimize wear, and can even dampen noise and vibrations. By ensuring proper materials and coatings, drive belt tensioners can maintain optimal performance, provide consistent tensioning, and have an extended service life.

timing belt tensioner

Can drive belt tensioners be customized or modified for specific automotive needs?

Drive belt tensioners are essential components in automotive applications that ensure proper tensioning of the drive belt. While they are primarily designed and manufactured by automotive manufacturers to meet specific requirements, there are limited customization and modification options available for certain automotive needs. Here’s a detailed explanation of the customization and modification possibilities for drive belt tensioners:

  • Aftermarket Tensioner Options:
  • Aftermarket manufacturers offer a range of drive belt tensioners that are designed as direct replacements for original equipment tensioners. These aftermarket options often provide similar or enhanced performance compared to the original tensioners. They may offer different features, such as improved durability, upgraded materials, or advanced designs. Choosing an aftermarket tensioner can be a way to customize or modify the tensioning system to better suit specific automotive needs, such as high-performance applications or specialized vehicles.

  • Adjustable Tensioner Designs:
  • Some drive belt tensioners feature adjustable designs that allow for fine-tuning of the belt tension. These adjustable tensioners typically include a mechanism, such as a tension adjustment bolt, that enables the user to increase or decrease the tension within a specified range. This adjustability can be beneficial in certain situations where specific belt tension requirements need to be met. For example, in applications with aftermarket accessories or modifications that affect the belt system, an adjustable tensioner can provide the flexibility to achieve the optimal tension for proper operation.

  • Performance Upgrades:
  • In high-performance automotive applications, modifications and upgrades to the drive belt tensioning system may be necessary to handle increased power or torque demands. In such cases, specialized tensioners designed for high-performance use may be available. These tensioners are often engineered with enhanced features, such as stronger springs, upgraded bearings, or improved damping mechanisms, to withstand higher loads and provide better belt control. Performance upgrades to the tensioner can help prevent belt slippage, reduce vibrations, and ensure reliable power transmission in demanding conditions.

  • Custom Fabrication:
  • In unique or custom automotive projects, it is possible to fabricate custom drive belt tensioners to suit specific requirements. This approach typically involves working with specialized fabrication shops or engineering teams to design and manufacture a tensioner that meets the desired specifications. Custom fabrication may be necessary in cases where off-the-shelf options are not available or do not adequately fulfill the specific automotive needs. It requires expertise in tensioner design, material selection, and compatibility with the existing belt system.

While there are some options for customization and modification of drive belt tensioners, it is important to note that any modifications should be carried out with caution and expertise. Modifying the tensioner without proper knowledge and understanding of the belt system dynamics can lead to adverse effects on performance, reliability, and safety. It is recommended to consult with automotive professionals or specialists who have experience in the design and modification of drive belt systems to ensure that any customization or modification efforts are done correctly and effectively.

timing belt tensioner

How do drive belt tensioners differ from other components in maintaining belt tension?

Drive belt tensioners have specific characteristics and functions that differentiate them from other components involved in maintaining belt tension in automotive systems. While other components such as idler pulleys and manual adjustment mechanisms also contribute to belt tension maintenance, drive belt tensioners offer distinct advantages and features. Here’s a detailed explanation of how drive belt tensioners differ from other components in maintaining belt tension:

  • Automatic Tension Adjustment:
  • One of the key differences of drive belt tensioners is their ability to automatically adjust belt tension. Drive belt tensioners are equipped with built-in mechanisms, such as spring-loaded arms or pulleys, that apply and maintain the appropriate tension in the belt. These mechanisms are designed to compensate for belt stretching due to wear or temperature variations. In contrast, other components like idler pulleys or manual adjustment mechanisms require manual intervention or periodic adjustment to maintain proper tension. The automatic tension adjustment feature of drive belt tensioners provides convenience and ensures consistent and optimal tension at all times.

  • Constant Tension:
  • Drive belt tensioners are designed to maintain a constant tension in the drive belt system. The tensioners apply the necessary force to keep the belt in contact with the pulleys, even as the belt stretches over time. This constant tension ensures efficient power transmission, reduces the risk of belt slippage, and minimizes wear on the belt and associated components. In contrast, idler pulleys provide additional support to the belt but do not actively maintain tension. Manual adjustment mechanisms, if present, require periodic adjustment to maintain proper tension. The constant tension feature of drive belt tensioners contributes to the reliable and uninterrupted operation of the belt system.

  • Integrated Design:
  • Drive belt tensioners are typically integrated components that are specifically designed to perform the task of tensioning the drive belt. They are often compact and incorporate the tensioning mechanism, pulley, and mounting bracket into a single unit. This integrated design simplifies installation and ensures proper alignment and operation of the tensioner. In contrast, idler pulleys serve as additional support pulleys and are separate components from the tensioner. Manual adjustment mechanisms, if present, may require separate brackets or levers for adjustment. The integrated design of drive belt tensioners provides a more streamlined and efficient solution for maintaining belt tension.

  • Automated Tension Monitoring:
  • Some modern drive belt tensioners are equipped with automated tension monitoring systems. These systems use sensors or indicators to continuously monitor the tension in the drive belt and provide feedback to the vehicle’s engine control unit (ECU) or dashboard display. This allows for real-time monitoring of belt tension and early detection of any abnormalities or deviations from the desired tension range. Other components like idler pulleys or manual adjustment mechanisms do not typically offer automated tension monitoring capabilities. The automated tension monitoring feature of drive belt tensioners enhances the diagnostic capabilities and maintenance of the belt system.

  • Application-Specific Designs:
  • Drive belt tensioners are designed and engineered for specific automotive applications. They are manufactured to meet the requirements and specifications of particular vehicle models and engine configurations. This ensures compatibility and optimal performance within the intended application. In contrast, idler pulleys and manual adjustment mechanisms may have more generic designs that can be used across multiple vehicle models or engine types. The application-specific designs of drive belt tensioners provide a tailored and optimized solution for maintaining belt tension in specific automotive systems.

In summary, drive belt tensioners differ from other components involved in maintaining belt tension in several ways. They offer automatic tension adjustment, provide constant tension, have integrated designs, may include automated tension monitoring systems, and are designed for specific automotive applications. These features make drive belt tensioners convenient, reliable, and efficient components for maintaining proper belt tension in automotive systems.

China Good quality CZPT Genuine Engine Quality Parts 2974172 3691280 Belt Tensioner Ribbed Belt Bearing Tensioner   drive axleChina Good quality CZPT Genuine Engine Quality Parts 2974172 3691280 Belt Tensioner Ribbed Belt Bearing Tensioner   drive axle
editor by CX 2024-04-10

China Hot selling CZPT Engine Timing Belt Tensioner 7701471519 30758260 Vkma26602 530004410 K015378xs for Renault Laguna for CZPT 960 axle bearing

Product Description

Basic information:

Description Aftermarket Engine Timing Belt Tensioner 3571260 VKMA26602 530004410 K015378XS For RENAULT LAGUNA For CZPT 960
Material Rubber, Gcr15, Steel
Application For RENAULT
For VOLVO
Position Engine system
Type Timing belt kit, without water pump
Teeth 148
Belt Width 23mm, with rounded tooth profile
Brand SI, PPB, or customized
Packing Neutral, SI, PPB brand packing or customized
OEM/ODM service Yes
Manufacture place ZHangZhoug, China
MOQ 200 PCS
OEM replacement Yes
Inspection 100%
Warranty 1 year or 30,000-50,000 KMS
Certificate ISO9001:2015 TS16949
Payment T/T, PayPal, Alibaba

Timing Belt Kit consists of a timing belt and tensioner & idler bearings.
A timing belt is a part of an Internal-Combustion Engine that synchronizes the rotation of the crankshaft and the camshaft(s) so that the engine’s valves open and close at the proper times during each cylinder’s intake and exhaust strokes.
In an Internal-Combustion Engine the timing belt is also critical to preventing the piston from striking the valves.
Changing the Timing Belt Kit component parts all together maintains the engine’s efficiency are promotes safe engine running.
Moreover, utilizing a complete kit saves considerable cost over the life cycle of the vehicle.
Detailed pictures:

O.E.:

7438610041
7701471519
3571260
8610041

Ref.:

B OSCH: 1987948683
D AYCO: KTB185
G ATES: K015378XS
G ATES: K571378XS
I NA: 530004410
O PTIBELT: KT1118
S KF: VKMA 0571 2
T IMKEN: KT94006

Application:

For RENAULT LAGUNA I (B56_, 556_) (1993/11 – 2001/03)
For RENAULT LAGUNA I Estate (K56_) (1995/09 – 2001/03)
For RENAULT SAFRANE Mk II (B54_) (1996/07 – 2000/12)
For CZPT 850 Estate (LW) (1992/04 – 1997/10)
For CZPT 960 (964) (1990/08 – 1994/07)
For CZPT 960 II (964) (1994/07 – 1996/12)
For CZPT 960 II Estate (965) (1994/07 – 1996/12)
For CZPT 960 Break (965) (1990/08 – 1994/07)
For CZPT S40 I Saloon (VS) (1995/07 – 2004/06)
For CZPT V40 Estate (VW) (1995/07 – 2004/06)
For CZPT C70 I Coupe (1997/03 – 2002/09)
For CZPT S70 Saloon (LS) (1996/11 – 2000/11)
For CZPT C70 I Convertible (1998/03 – 2005/10)
For CZPT 850 (LS) (1991/06 – 1997/10)
For CZPT XC70 CROSS COUNTRY Estate (1997/10 – 2007/08)

Hot-sale:

S-KF Vehicle Application S-KF Vehicle Application S-KF Vehicle Application S-KF Vehicle Application
VKMA 57113 VW
SEAT
A UDI
VKMA 91400 T OYOTA VKMA 57110 F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 01918 A UDI
VW
SEAT
S-KODA
VKMA 57124 SEAT
VW
VKMA 91013 T OYOTA VKMA 57104 F IAT
A LFA ROMEO
ABARTH
LXIHU (WEST LAKE) DIS.A
O-PEL
JEEP
CHRYSLER
VAUXHALL
VKMA 01908 A UDI
VW
VKMA 01107 VW
SEAT
VKMA 03235 P-EUGEOT
C ITROËN
F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 06501 R-ENAULT VKMA 95660 H YUNDAI
KIA
VKMA 01113 VW
SEAT
S-KODA
A UDI
VKMA 03256 P-EUGEOT
C ITROËN
VKMA 06301 V-OLVO VKMA 95659 H YUNDAI
KIA
VKMA 01136 A UDI
VW
SEAT
S-KODA
VKMA 5711 C ITROËN VKMA 01942 VW
A UDI
SEAT
S-KODA
F ORD
VKMA 03218 P-EUGEOT
C ITROËN
VKMA 01142 VW
A UDI
SEAT
F ORD
S-KODA
VKMA 57186 I-VECO
F IAT
O-PEL
R-ENAULT
VAUXHALL
SANTANA
VKMA 01907 A UDI VKMA 03205 F ORD
P-EUGEOT
C ITROËN
F IAT
T OYOTA
VKMA 01244 VW VKMA 03244 P-EUGEOT
C ITROËN
T OYOTA
F IAT
VKMA 01903 A UDI
VW
S-KODA
VKMA 03253 C ITROËN
P-EUGEOT
VKMA 01250 VW
S-KODA
SEAT
A UDI
F ORD
VKMA 03304 C ITROËN
P-EUGEOT
VKMA 57177 A LFA ROMEO
LXIHU (WEST LAKE) DIS.A
F IAT
VKMA 03251 C ITROËN
P-EUGEOT
F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 01253 VW VKMA 06002 R-ENAULT
DACIA
NISSAN
PROTON
VKMA 57172 F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 03246 C ITROËN
P-EUGEOT
F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 01265 A UDI VKMA 06000 R-ENAULT VKMA 01335 A UDI
VW
VKMA 03264 C ITROËN
P-EUGEOT
F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 01270 VW VKMA 5710 O-PEL
VAUXHALL
H ONDA
VKMA 01332 A UDI
VW
VKMA 03261 P-EUGEOT
C ITROËN
JAGUAR
L-AND ROVER
VKMA 01278 A UDI
VW
SEAT
S-KODA
VKMA 05606 O-PEL
VAUXHALL
VKMA 01301 A UDI VKMA 5712 P-EUGEOT
C ITROËN
VKMA 01279 VW
A UDI
S-KODA
VKMA 05260 O-PEL
VAUXHALL
C HEVROLET
F IAT
HOLDEN
A LFA ROMEO
SAAB
VKMA 03306 C ITROËN
P-EUGEOT
O-PEL
T OYOTA
VAUXHALL
VKMA 03050 C ITROËN
P-EUGEOT
TALBOT
F IAT
VKMA 01280 VW
S-KODA
SEAT
A UDI
VKMA 06129 R-ENAULT
NISSAN
SUZUKI
VKMA 03305 C ITROËN
L-AND ROVER
P-EUGEOT
F ORD
JAGUAR
M ITSUBISHI
F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 57121 VW
VKMA 01936 A UDI
VW
SEAT
S-KODA
VKMA 06127 R-ENAULT
NISSAN
O-PEL
VAUXHALL
M ITSUBISHI
V-OLVO
VKMA 03259 P-EUGEOT
C ITROËN
F ORD
M AZDA
V-OLVO
F IAT
MINI
F CZPT AUSTRALIA
SUZUKI
VKMA 57115 S-KODA
VW
VKMA 01940 A UDI
VW
VKMA 06571 R-ENAULT
DACIA
LADA
NISSAN
VKMA 03257 F ORD
P-EUGEOT
C ITROËN
F IAT
V-OLVO
F CZPT AUSTRALIA
LXIHU (WEST LAKE) DIS.A
VKMA 57111 VW
SEAT
A UDI
VKMA 57101 F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 06109 R-ENAULT VKMA 03248 C ITROËN
P-EUGEOT
F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 01140 A UDI
VW
VKMA 57152 F IAT VKMA 06108 R-ENAULT VKMA 03241 P-EUGEOT
C ITROËN
F IAT
SUZUKI
ROVER
H YUNDAI
LADA
VKMA 57132 A UDI
VKMA 57154 F IAT
A LFA ROMEO
LXIHU (WEST LAKE) DIS.A
VKMA 0571 1 O-PEL
VAUXHALL
SAAB
VKMA 03266 C ITROËN
P-EUGEOT
VKMA 57103 A UDI
VW
VKMA 57184 A LFA ROMEO
F IAT
VKMA 05402 O-PEL
VAUXHALL
C HEVROLET
D AEWOO
HOLDEN
VKMA 5713 O-PEL
VAUXHALL
SAAB
CADILLAC
SUZUKI
C HEVROLET
HOLDEN
VKMA 91707 T OYOTA
L-EXUS
VKMA 57195 A LFA ROMEO
F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 06123 R-ENAULT VKMA 05220 O-PEL
VAUXHALL
HOLDEN
LADA
VKMA 91401 T OYOTA
VKMA 57177 A LFA ROMEO
LXIHU (WEST LAKE) DIS.A
VKMA 96223 SUZUKI VKMA 01220 A UDI
VW
VKMA 91303 T OYOTA
VKMA 57110 F IAT
LXIHU (WEST LAKE) DIS.A
P-EUGEOT
C ITROËN
VKMA 96214 SUZUKI VKMA 01152 A UDI
VW
S-KODA
VKMA 91201 T OYOTA
VKMA 57100 A LFA ROMEO VKMA 96204 SUZUKI VKMA 5716 MG
ROVER
LOTUS
VKMA 92500 NISSAN
VKMA 57184 F IAT
I-VECO
R-ENAULT
P-EUGEOT
C ITROËN
VKMA 96203 SUZUKI VKMA 08501 CHRYSLER
JEEP
LDV
LTI
VKMA 92004 NISSAN
VKMA 03201 P-EUGEOT
C ITROËN
F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 95675 M ITSUBISHI VKMA 08201 LADA VKMA 91920 T OYOTA
VKMA 03210 P-EUGEOT
C ITROËN
VKMA 95666 M ITSUBISHI
KIA
VKMA 0571 3 V-OLVO VKMA 93005 H ONDA
VKMA 03213 P-EUGEOT
C ITROËN
F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 95663 M ITSUBISHI VKMA 01263 A UDI
VW
SEAT
S-KODA
VKMA 92520 NISSAN
VKMA 03231 C ITROËN
P-EUGEOT
VKMA 95656 H YUNDAI
KIA
VKMA 01258 VW
V-OLVO
VKMA 91124 T OYOTA
VW
VKMA 03240 P-EUGEOT
C ITROËN
ROVER
TALBOT
LADA
VKMA 95655 H YUNDAI VKMA 94509-2   VKMA 94009 M AZDA
VKMA 03247 P-EUGEOT
C ITROËN
F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 95976 M ITSUBISHI
F IAT
VKMA 94601 M AZDA
KIA
VKMA 94007 M AZDA
VKMA 03254 P-EUGEOT
C ITROËN
F IAT
VKMA 95958 H YUNDAI
KIA
VKMA 5711 C ITROËN
P-EUGEOT
VKMA 93615 H ONDA
VKMA 03258 P-EUGEOT
C ITROËN
VKMA 95924-1   VKMA 57114 VW
A UDI
SEAT
VKMA 01350 SEAT
S-KODA
VW
A UDI
VKMA 03317 P-EUGEOT
C ITROËN
F ORD
O-PEL
T OYOTA
DS
VAUXHALL
F CZPT USA
VKMA 95902 M ITSUBISHI VKMA 57102 VW
SEAT
VKMA 571 O-PEL
VAUXHALL
HOLDEN
VKMA 04221 F ORD VKMA 96202 SUZUKI
SANTANA
VKMA 01135 A UDI
VW
SEAT
S-KODA
VKMA 05202 O-PEL
VAUXHALL
BEDF ORD
VKMA 5711 O-PEL
VAUXHALL
D AEWOO
C HEVROLET
HOLDEN
BEDF ORD
VKMA 96200 SUZUKI VKMA 57110 VW
A UDI
VKMA 5716 O-PEL
VAUXHALL
C HEVROLET
HOLDEN
D AEWOO
SAAB
VKMA 5710 O-PEL
VAUXHALL
HOLDEN
C HEVROLET
VKMA 96571 SUZUKI VKMA 57100 VW
A UDI
SEAT
P-ORSCHE
VKMA 03318 C ITROËN
F ORD
P-EUGEOT
O-PEL
VAUXHALL
T OYOTA
VKMA 5712 O-PEL
VAUXHALL
C HEVROLET
HOLDEN
VKMA 03316 P-EUGEOT
C ITROËN
F ORD
V-OLVO
M AZDA
T OYOTA
F IAT
M ITSUBISHI
O-PEL
VKMA 98105 S UBARU VKMA 04000 F ORD
VKMA 5714 O-PEL
VAUXHALL
SAAB
HOLDEN
SUZUKI
VKMA 03314 P-EUGEOT
C ITROËN
F ORD
VKMA 97504 DAIHATSU VKMA 5718 F ORD
VKMA 05213 O-PEL
VAUXHALL
VKMA 5717 F ORD
M AZDA
VKMA 96000 SUZUKI VKMA 5713 F ORD
VKMA 05214 O-PEL
VAUXHALL
VKMA 57102 F IAT VKMA 96219 SUZUKI VKMA 04226 F ORD
F CZPT AUSTRALIA
V-OLVO
VKMA 05222 O-PEL
VAUXHALL
D AEWOO
C HEVROLET
HOLDEN
VKMA 57183 A LFA ROMEO
LXIHU (WEST LAKE) DIS.A
VKMA 96218 SUZUKI
SANTANA
VKMA 04201 F ORD
VKMA 05228 O-PEL
VAUXHALL
C HEVROLET
HOLDEN
D AEWOO
VKMA 57112 VW
A UDI
SEAT
VKMA 96208 SUZUKI
SANTANA
S UBARU
VKMA 01118 SEAT
VW
VKMA 0571 0 O-PEL
VAUXHALL
SAAB
HOLDEN
VKMA 91904 L-EXUS
T OYOTA
VKMA 99907 I-SUZU VKMA 57131 A UDI
VW
VKMA 06006 R-ENAULT VKMA 91715 L-EXUS VKMA 98110 S UBARU VKMA 57101 A UDI
VKMA 06571 R-ENAULT VKMA 91711 T OYOTA VKMA 94000 M AZDA
F CZPT AUSTRALIA
F CZPT USA
VKMA 57107 A UDI
VKMA 06104 R-ENAULT VKMA 93011 H ONDA VKMA 93616 H ONDA VKMA 57116 VW
SEAT
VKMA 06115 R-ENAULT
V-OLVO
VKMA 93600 H ONDA
ROVER
VKMA 93002 ROVER
H ONDA
VKMA 57118 A UDI
VW
S-KODA
VKMA 06117 R-ENAULT
O-PEL
VKMA 93200 H ONDA VKMA 92519 NISSAN VKMA 57119 VW
SEAT
F ORD
VKMA 08000 B MW VKMA 01255 A UDI
VW
JEEP
SEAT
M ITSUBISHI
S-KODA
DODGE
CHRYSLER
VKMA 93500 H ONDA VKMA 06113 R-ENAULT
VKMA 08502 JEEP
CHRYSLER
LXIHU (WEST LAKE) DIS.A
DODGE
LTI
VKMA 57184 I-VECO
F IAT
R-ENAULT
VKMA 93210 H ONDA VKMA 06107 R-ENAULT
VKMA 91002 T OYOTA VKMA 01106 VW
SEAT
VKMA 93006 H ONDA VKMA 06137 R-ENAULT
VKMA 91017 T OYOTA
L-EXUS
VKMA 01200 A UDI VKMA 91202 T OYOTA
DAIHATSU
VKMA 06128 R-ENAULT
VKMA 91708 T OYOTA VKMA 01143 VW
A UDI
F ORD
SEAT
VKMA 91571 T OYOTA VKMA 5714 MG
ROVER
L-AND ROVER
VKMA 91713 T OYOTA VKMA 01122 VW
S-KODA
SEAT
VKMA 91571 T OYOTA VKMA 06800 V-OLVO
VKMA 92006 NISSAN VKMA 01120 VW
SEAT
VKMA 92012 NISSAN VKMA 06214 R-ENAULT
JEEP
VKMA 92101 NISSAN VKMA 95571 M ITSUBISHI VKMA 91917 L-EXUS
T OYOTA
VKMA 06212 R-ENAULT
VKMA 92513 NISSAN VKMA 95571 M ITSUBISHI VKMA 91907 L-EXUS
T OYOTA
VKMA 0571 5 V-OLVO
VKMA 92516 NISSAN VKMA 95571 M ITSUBISHI VKMA 91719 T OYOTA VKMA 0571 2 V-OLVO
R-ENAULT
VKMA 93019 H ONDA VKMA 95628 M ITSUBISHI VKMA 94508 KIA VKMA 06040 F ORD
VKMA 93201 H ONDA VKMA 95627 VKMA 95627 VKMA 94506 KIA VKMA 05224 O-PEL
VAUXHALL
VKMA 94102 M AZDA
KIA
VKMA 94626 M AZDA
F ORD
F CZPT AUSTRALIA
VKMA 95030 H YUNDAI VKMA 06003 R-ENAULT
DACIA
VKMA 94201 M AZDA
KIA
VKMA 94619 M AZDA VKMA 95019 M ITSUBISHI VKMA 91903 T OYOTA
VKMA 94230 M AZDA VKMA 95012 M ITSUBISHI
PROTON
VKMA 94611 M AZDA VKMA 95626 M ITSUBISHI
M AZDA
VKMA 94310 M AZDA VKMA 94920 M AZDA VKMA 94610 M AZDA
F CZPT ASIA AND OCEANIA
VKMA 95624 M ITSUBISHI
V-OLVO
VKMA 94507 KIA VKMA 92518 NISSAN VKMA 94016 KIA VKMA 95623 M ITSUBISHI
VKMA 94616 M AZDA
F ORD
VKMA 93101 H ONDA
ROVER
VKMA 95000 M ITSUBISHI VKMA 95620 M ITSUBISHI
VKMA 94620 M AZDA VKMA 5711 C HEVROLET
O-PEL
VAUXHALL
VKMA 94919 M AZDA VKMA 95621 M ITSUBISHI
VKMA 95005 M ITSUBISHI
H YUNDAI
VKMA 05609 O-PEL
VAUXHALL
C HEVROLET
VKMA 95632 H YUNDAI
KIA
VKMA 95619 H YUNDAI
M ITSUBISHI
VKMA 95613 M ITSUBISHI
CHRYSLER
DODGE
VKMA 0571 2 O-PEL
VAUXHALL
CADILLAC
SAAB
VKMA 91011 T OYOTA
L-EXUS
VKMA 94222 M AZDA
F CZPT USA
F CZPT AUSTRALIA
VKMA 95658 H YUNDAI
KIA
VKMA 06101 R-ENAULT
V-OLVO
VKMA 91006 T OYOTA VKMA 94101 M AZDA
VKMA 95667 H YUNDAI
KIA
VKMA 06103 R-ENAULT
V-OLVO
VKMA 0571 4 V-OLVO
R-ENAULT
VKMA 95650 M ITSUBISHI
VKMA 95674 M ITSUBISHI VKMA 06038 V-OLVO
F ORD
V-OLVO ASIA
VKMA 06220 V-OLVO VKMA 57197 A LFA ROMEO
12

F IAT

VKMA 95677 M ITSUBISHI VKMA 06571 R-ENAULT VKMA 5710 ROVER
MG
LOTUS
VKMA 57142 F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 95681 H YUNDAI
KIA
VKMA 06571 R-ENAULT
NISSAN
VKMA 5713 MG
ROVER
VKMA 57124 LXIHU (WEST LAKE) DIS.A
F IAT
A LFA ROMEO
VKMA 95959 H YUNDAI
KIA
VKMA 91720 T OYOTA VKMA 08001 B MW VKMA 57112 A LFA ROMEO
LXIHU (WEST LAKE) DIS.A
VKMA 95973 H YUNDAI VKMA 92008 NISSAN VKMA 06560 V-OLVO VKMA 57181 A LFA ROMEO
VKMA 95975 M ITSUBISHI VKMA 95015 M ITSUBISHI
H YUNDAI
VKMA 04305 F ORD VKMA 57103 F IAT
LXIHU (WEST LAKE) DIS.A
ZASTAVA
VKMA 07404 L-AND ROVER VKMA 95014 M ITSUBISHI
H YUNDAI
KIA
VKMA 04304 F ORD VKMA 01900 A UDI
VKMA 5718 ROVER
L-AND ROVER
VKMA 95571 M ITSUBISHI
H YUNDAI
VKMA 04222 F ORD
M AZDA
V-OLVO
F CZPT AUSTRALIA
VKMA 01927 A UDI
VW
VKMA 98109 S UBARU VKMA 95652 H YUNDAI
KIA
VKMA 0571 0 O-PEL
VAUXHALL
R-ENAULT
SAAB
VKMA 90008 C HEVROLET
D AEWOO
VKMA 97505 DAIHATSU
T OYOTA
VKMA 95642 H YUNDAI
M ITSUBISHI
VKMA 04001 F ORD VKMA 91304 T OYOTA
L-EXUS
VKMA 99007 I-SUZU
O-PEL
VAUXHALL
HOLDEN
VKMA 95641 H YUNDAI
KIA
VKMA 5714 F ORD
F CZPT AUSTRALIA
VKMA 90007 D AEWOO
VKMA 99004 O-PEL
VAUXHALL
I-SUZU
VKMA 95039 M ITSUBISHI VKMA 06106 R-ENAULT
O-PEL
VAUXHALL
VKMA 90001 C HEVROLET
D AEWOO
VKMA 57115 F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 94907 KIA VKMA 06140 R-ENAULT
DACIA
MERCEDES-BENZ
NISSAN
VKMA 91122 T OYOTA
VKMA 57106 F IAT
LXIHU (WEST LAKE) DIS.A
A LFA ROMEO
CHRYSLER
F ORD
VKMA 94614 M AZDA VKMA 06009 DACIA
R-ENAULT
LADA
VKMA 91571 T OYOTA
VKMA 57199 F IAT
O-PEL
A LFA ROMEO
LXIHU (WEST LAKE) DIS.A
SUZUKI
JEEP
VAUXHALL
CHRYSLER
VKMA 95974-1   VKMA 03265 F IAT
C ITROËN
P-EUGEOT
SUZUKI
VKMA 04202 F ORD
VKMA 57193 A LFA ROMEO
F IAT
JEEP
LXIHU (WEST LAKE) DIS.A
CHRYSLER
VKMA 95974 M ITSUBISHI VKMA 06008 R-ENAULT VKMA 04300 F ORD
VKMA 57179 F IAT
A LFA ROMEO
LXIHU (WEST LAKE) DIS.A
VKMA 95966 M ITSUBISHI VKMA 06007 R-ENAULT VKMA 04301 F ORD
VKMA 01952 A UDI
VW
S-KODA
VKMA 98000 S UBARU VKMA 06124 R-ENAULT
V-OLVO
VKMA 5710 O-PEL
VAUXHALL
HOLDEN
VKMA 01277 VW
A UDI
S-KODA
VKMA 97503 DAIHATSU VKMA 06126 R-ENAULT VKMA 01259 VW
A UDI
SEAT
S-KODA
VKMA 57168 F IAT VKMA 98112 S UBARU VKMA 01251 VW
SEAT
S-KODA
A UDI
VKMA 01276 VW
S-KODA
VKMA 01901 A UDI VKMA 91302 T OYOTA VKMA 01222 A UDI
VW
SEAT
S-KODA
VKMA 01271 VW
VKMA 57111 F IAT
LXIHU (WEST LAKE) DIS.A
VKMA 01943 VW
A UDI
F ORD
SEAT
VKMA 01935 A UDI
VW
SEAT
S-KODA
   

Packaging & Shipping

 

 

Company Profile

ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and auto parts.

Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.

 

Customer satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.

Why choose us

More than 20 years of manufacturing and exporting experience
OEM manufacturing available
Full range, large stock
Quickly feedback
One year warranty
One-stop service
On-time delivery
Good quality
Wide range
Good after-sale service
Quick response
Professional

Exhibition

Certificate

 

 

FAQ

Q1.What is your shipping logistic?
Re: DHL, TNT, FedEx express, by air/sea/train.

Q2:What’s the MOQ?
Re:The MOQ is always 100 sets. If ordering together with other models, small quantities can be organized. But need more time due to the production schedule.

Q3. What are your goods of packing?
Re: Generally, our goods will be packed in Neutral white or brown boxes. Our brand packing SI & CZPT are offered. If you have any other packing requests, we shall also handle them.

Q4. What is your sample policy?
Re: We can supply the sample if we have ready parts in stock.

Q5. Do you have any certificates?
Re: Yes, we have the certificate of ISO9001:2015.

Q6:Any warranty of your products.
Re: Sure, We are offering a guarantee for 12 months or 40,000-50,000 km for the aftermarket.

Q7:When are you going to deliver?
A: Sample: 5-15 business days after payment is confirmed.
Bulk order:15-60 workdays after deposit received…

Q8:What’s your delivery way?
A: By sea, by air, by train, express as your need.

Q9:What are your terms of delivery?
A: EXW, FOB, CFR, CIF, DAP, etc.

Q10:Can you support the sample order?
A: Yes, we can supply the sample if we have parts in stock, but the customer has to pay the sample payment(according to the value of the samples) and the shipping cost.

Q11:What are you going to do if there has a claim for the quality or quantity missing?
A: 1. For quality, during the warranty period, if any claim for it, we shall help the customer to find out what’s the exact problem. Using by mistake, installation problem, or poor quality? Once it’s due to the poor quality, we will arrange the new products to customers.
2. For missing quantities, there have 2 weeks for claiming the missing ones after receiving the goods. We shall help to find out where it is.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: Yes
Type: Tensioner Bearing
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

timing belt tensioner

Can you describe the various mounting options and installations for drive belt tensioners in different vehicle models?

Drive belt tensioners can be mounted in different ways depending on the specific design and layout of the vehicle’s engine and belt system. The mounting options and installations for drive belt tensioners can vary across different vehicle models. Here’s a detailed description of the various mounting options and installations for drive belt tensioners:

  • Idler Pulley Mounting:
  • In some vehicle models, the drive belt tensioner is mounted as an idler pulley. The tensioner is integrated into the belt routing system and is responsible for maintaining the proper tension of the drive belt. It is typically mounted on a bracket or housing using bolts or other fasteners. The idler pulley tensioner can be a standalone component or combined with other pulleys, such as the alternator pulley or water pump pulley, to form a pulley assembly.

  • Spring-Loaded Arm Mounting:
  • Another common mounting option for drive belt tensioners is a spring-loaded arm design. In this configuration, the tensioner consists of a pivoting arm with a pulley at one end and a spring mechanism at the other end. The tensioner arm is mounted on a bracket or housing using a pivot bolt or pin. The spring applies tension to the belt by pulling the arm in the opposite direction, maintaining the desired tension level. The arm may have an adjustment mechanism to fine-tune the tension or compensate for belt wear over time.

  • Hydraulic or Pneumatic Actuated Mounting:
  • In some advanced vehicle models, drive belt tensioners may utilize hydraulic or pneumatic actuation for tension control. These tensioners incorporate a hydraulic or pneumatic cylinder that applies force to the tensioner arm or pulley, adjusting the tension as needed. The tensioner is typically mounted on a bracket or housing using bolts or other fasteners. Hydraulic or pneumatic lines connect the tensioner to a control system that regulates the tension based on inputs such as engine load, temperature, or operating conditions.

  • Combination Designs:
  • Some vehicle models may employ combination designs that incorporate multiple tensioner mounting options. For example, a vehicle may have a spring-loaded arm tensioner for the main drive belt and an idler pulley tensioner for an auxiliary belt system. These combination designs allow for efficient belt routing and tension control in complex engine layouts with multiple belt-driven components.

  • Specific Engine Configurations:
  • Mounting options and installations for drive belt tensioners can also vary based on specific engine configurations. For example, in transverse-mounted engines commonly found in front-wheel-drive vehicles, the tensioner may be mounted on the side of the engine block or the front of the cylinder head. In longitudinally-mounted engines, the tensioner may be mounted on the side of the engine block, the front of the timing cover, or other locations depending on the design and layout of the engine.

It’s important to note that the specific mounting options and installations for drive belt tensioners can vary significantly between different vehicle models, engine configurations, and even model years. Therefore, it is essential to refer to the vehicle manufacturer’s specifications, technical documentation, or service manuals for precise information on the mounting options and installation procedures applicable to a particular vehicle model.

timing belt tensioner

Can you provide examples of symptoms indicating a malfunctioning drive belt tensioner in a vehicle?

A malfunctioning drive belt tensioner in a vehicle can exhibit various symptoms that indicate a potential issue. Recognizing these symptoms is important as it allows for timely inspection and repair to prevent further damage to the drive belt system. Here are some examples of symptoms that may indicate a malfunctioning drive belt tensioner:

  • Squealing or Screeching Noises:
  • A common symptom of a faulty tensioner is the presence of squealing or screeching noises coming from the engine compartment. These noises can occur when the tensioner fails to maintain proper belt tension, causing the drive belt to slip or lose grip on the pulleys. The squealing or screeching sound is a result of the belt rubbing against the pulleys or other engine components. If the tensioner is not functioning correctly, it may not apply sufficient pressure on the belt, leading to this noise.

  • Visible Belt Misalignment:
  • If the drive belt tensioner is not properly aligned or functioning correctly, the drive belt may appear misaligned or off-center. This misalignment can be visually noticeable when inspecting the belt in the engine compartment. A misaligned belt can cause uneven wear, increased friction, and reduced power transmission efficiency. It is important to address this issue promptly to prevent further damage and potential belt failure.

  • Belt Slippage or Glazing:
  • A malfunctioning tensioner can lead to belt slippage or glazing. Belt slippage occurs when the tensioner fails to maintain proper tension, causing the belt to slip on the pulleys. This can result in reduced power delivery to the driven components, leading to decreased performance or functionality. Glazing, on the other hand, refers to a shiny appearance on the belt’s surface due to excessive heat and friction. Both belt slippage and glazing are indications of an inadequate tensioner function and should be addressed promptly.

  • Belt Wear or Damage:
  • A malfunctioning tensioner can contribute to accelerated wear or damage to the drive belt. Excessive belt wear can occur due to inadequate tension, misalignment, or abnormal belt movement caused by a faulty tensioner. Signs of belt wear include cracks, fraying, or missing chunks of the belt material. If the tensioner is not functioning correctly, it can put additional stress on the belt, leading to premature wear and potential belt failure. Regular inspection of the drive belt for signs of wear and damage is crucial to identify any potential issues with the tensioner.

  • Malfunctioning Engine Systems:
  • A malfunctioning drive belt tensioner can also impact the performance of various engine systems. If the tensioner fails to maintain proper belt tension, it can result in inadequate power delivery to components such as the alternator, power steering pump, air conditioning compressor, or water pump. This can lead to issues such as dimming lights, difficulty in steering, reduced cooling efficiency, or a malfunctioning air conditioning system. If multiple engine systems are experiencing problems simultaneously, it could be an indication of a faulty drive belt tensioner.

It is important to note that these symptoms can also be caused by other issues related to the drive belt system. Therefore, a comprehensive inspection by a qualified mechanic is recommended to accurately diagnose the cause of the symptoms and determine if the drive belt tensioner requires repair or replacement.

timing belt tensioner

Can you explain the importance of proper tensioning for drive belts in cars and trucks?

Proper tensioning for drive belts in cars and trucks is of utmost importance for the efficient and reliable operation of the vehicles. Maintaining the correct tension in the drive belts ensures optimal power transfer, prevents slippage, reduces wear and noise, and contributes to the overall performance and longevity of the vehicles. Here’s a detailed explanation of the importance of proper tensioning for drive belts:

  • Efficient Power Transfer:
  • Proper tensioning of drive belts allows for efficient power transfer from the engine to various components such as the alternator, power steering pump, air conditioning compressor, and water pump. When the belts are properly tensioned, they maintain a positive grip on the pulleys, ensuring maximum frictional contact. This efficient power transfer minimizes energy losses and optimizes the performance of the vehicle’s systems, resulting in improved overall efficiency and performance.

  • Prevention of Belt Slippage:
  • Drive belt slippage can occur when the belts are either too loose or too tight. Loose belts can slip on the pulleys, resulting in reduced power transmission and impaired operation of the vehicle’s accessories. On the other hand, excessively tight belts can cause excessive strain on the components and lead to premature wear. Proper tensioning ensures that the belts remain securely engaged with the pulleys, preventing slippage and maintaining effective power transfer.

  • Reduced Wear and Noise:
  • Correct tensioning helps reduce wear on the drive belts and associated components. When the belts are properly tensioned, they experience minimal movement and vibration, resulting in reduced friction and wear. This extends the lifespan of the belts and reduces the frequency of belt replacements. Additionally, proper tensioning helps dampen belt vibrations, resulting in reduced noise levels. This contributes to a quieter and more comfortable driving experience.

  • Optimal Performance and Reliability:
  • Proper tensioning of drive belts is crucial for achieving optimal performance and reliability in cars and trucks. When the belts are tensioned correctly, the vehicle’s systems and components receive the necessary power to operate efficiently. This includes components such as the alternator, which charges the battery and powers the electrical system, and the power steering pump, which assists in steering. By maintaining the correct tension in the drive belts, the vehicles can operate reliably, ensuring smooth operation, minimizing the risk of component failures, and reducing the likelihood of unexpected breakdowns.

  • Safety Considerations:
  • Proper tensioning of drive belts also has safety implications. For example, the water pump is driven by a belt and plays a critical role in cooling the engine. If the belt is not properly tensioned and slips or breaks, it can result in engine overheating, potentially leading to engine damage and safety hazards. Similarly, the power steering system relies on the drive belt to operate properly. Insufficient tension can cause power steering failure, making it more difficult to steer the vehicle, especially at low speeds or during maneuvers. Proper tensioning helps ensure the safe and reliable operation of these critical components.

In summary, proper tensioning for drive belts in cars and trucks is crucial for efficient power transfer, prevention of belt slippage, reduction of wear and noise, optimal performance and reliability, and safety considerations. By maintaining the correct tension in the drive belts, vehicles can operate smoothly, maximize power transfer efficiency, minimize wear on components, and ensure the safe and reliable operation of critical systems. Regular inspection and adjustment of belt tension are essential maintenance practices to ensure the longevity and performance of the vehicles.

China Hot selling CZPT Engine Timing Belt Tensioner 7701471519 30758260 Vkma26602 530004410 K015378xs for Renault Laguna for CZPT 960   axle bearingChina Hot selling CZPT Engine Timing Belt Tensioner 7701471519 30758260 Vkma26602 530004410 K015378xs for Renault Laguna for CZPT 960   axle bearing
editor by CX 2024-03-25

China OEM CZPT Pulley/ Timing Belt 13077-54A00 13077-54A01 Vkm82302 U357 03.411 532011020 Qtt416 Auto Spare Parts Engine Tensioner Bearing Pulley for Nissan Ad Max Van with Good quality

Product Description

Detailed Photos

Xihu (West Lake) Dis. Pulley/ timing belt 13077-54A.2 VKBA523 482A/472 VKBA 5038 35BWD16 VKM14103

 

Company Profile

ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and other parts.

Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.

 

Customer’s satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.

 

Our Advantages

More than 20 years of manufacturing and exporting experience
OEM manufacturing available
Full range, large stock
Quickly feedback
One year warranty
One-stop service
On-time delivery

Packaging & Shipping

FAQ

1. What’s the minimum order quantity?

We don’t have the minimum order quantity. We can also provide free samples, but you need to pay the freight.

     
 2. Do you provide ODM&OEM order service?

Yes, we provide ODM&OEM services to customers around the world, and we can customize different brands and different sizes of pacakging boxes according to customers’ requirements.

     
3. After-sales service and warranty time

We guarantee that our products will be free from defects in materials and workmanship within 12 months from the date of delivery. The warranty is void due to improper use, incorrect installation, and physical damage.
 

4. How to place an order?

Send us an email of the models, brand, quantity, consignee information, model of transportation, and payment
Confirm payment and arrange the production.
 

5. What are your packing conditions?

We use standardized export packaging and environmental protection packaging materials. If you have a legally registered patent, we will package the goods in your brand box after receiving your authorization

6. What are your payment terms?

T/T is 30% of the payment in advance and 70% balance before delivery. Before you pay the balance, we will show you photos or videos of the products and packaging.
 

7. How long is your delivery time?

The delivery time of sample order is 3-5 days, and that of a batch order is 5-45 days. The exact delivery time depends on the item and the quantity you ordered.
 

8. Do you test all products before delivery?
Yes, according to ISO standards, we have professional Q/C personnel, precision testing instruments, and an internal inspection system. We control the quality of every process from material receiving to packaging to ensure that you receive high-quality products

 

How to Repair a Timing Belt Tensioner

Your timing belt tensioner is a critical component of your vehicle’s drivetrain. Too little tension, for example, will cause the belt to slip, and too much tension can overload shaft bearings, leading to premature failure. If you notice that your belt tensioner is not working properly, you should immediately visit a mechanic. Corrosion from road splash, dirt, mud, or other debris can jam the tensioner housing. To avoid this, make sure that you replace your timing belt tensioner as soon as possible.
belt

Symptoms of a bad belt tensioner

If you’ve ever wondered what signs indicate a bad belt tensioner, look no further than your vehicle’s engine. Worn belts or a broken tensioner can cause an irritating squealing noise, as well as the belt to slip. Even worse, a bad tensioner can cause water to enter the belt and pulley, resulting in water damage. A worn tensioner is usually the culprit of the noise, but there are also other warning signs that a belt is in trouble.
Your vehicle’s engine may start to run poorly or even squeal when you turn the key. Similarly, your engine may fail to start at all, or the check engine light may illuminate. The belt may also start to wear out in an unusual pattern. These signs indicate that the tensioner is in need of replacement. If you notice 1 or more of these signs, get your car checked right away.
To check the condition of the tensioner, remove the drive belt and observe the pulley. You may notice rust dripping or bleeding at the mounting bolts, which are the most common signs of a bad tensioner. If you can’t remove the drive belt, check the pulley by rotating it. If you feel resistance, the pulley is likely worn or slack.
Failure of the belt tensioner will also cause other parts of the car to fail. If a bad belt tensioner isn’t fixed quickly, you might not be able to use the vehicle properly. You could end up breaking your car’s engine, losing power steering, and possibly even the water pump. If your car is not running right, you could be stuck in the middle of nowhere. Even if the alternator doesn’t work, you’ll still have a malfunctioning power steering system and a dead AC system.
A broken timing belt tensioner can cause strange noises or a no-start condition. These noises and symptoms are signs of a bad belt tensioner, and you’ll have to replace it ASAP. If you don’t know what symptoms mean, don’t hesitate to take your car to a mechanic. You’ll be surprised how easy it is to check this vital component and save yourself a bunch of money.

Components of a belt tensioner

The components of a belt tensioner assembly consist of 4 key components. The clearance between the pulley and the base is critical to the tensioner’s operation. If the tensioner is installed incorrectly, the spring can break and cause severe injury. The spring’s preload and powerful force make it difficult to service the unit safely. These parts are non-serviceable. If you are unsure of how to repair your tensioner, contact an authorized mechanic.
The components of a belt tensioner drive are shown in FIG. 2. The rotor shaft is connected to the drive screw, while the second transmission is connected to the gear shaft. The rotor and gear shaft are in parallel with each other. The gear shaft and worm wheel are connected to the belt tensioner drive. In other words, the belt tensioner drive is located in the B-pillar of the motor vehicle.
A belt tensioner may be equipped with a drive shaft and electric motor. The drive shaft may also contain a worm gear or worm wheel. The drive shaft also has an intermediate gearbox. Once the tensioner is set, it is ready to move to its safe-position position. It is a relatively simple and inexpensive replacement for your belt. When replacing a multi-ribbed belt, be sure to replace the tensioner along with the belt. Gates recommends replacing all wear parts at once.
In the event of a faulty drive belt tensioner, the belt will not stay taut. The pulley can wobble and cause the belt to fray. In addition to this, the bearings can cause a loud squealing noise. In this case, the accessory motors will continue to run, while the belt itself will not. Therefore, replacing the timing belt tensioner is an important part of maintaining the car.
In some systems, the belt tensioner uses a worm gear as the first gear. This results in rolling engagement of the screw’s teeth. This reduces noise and vibrations, while maximizing the efficiency of the belt tensioner drive. Additionally, a worm gear can eliminate the need for additional parts in belt tensioners. While this may not be practical in all instances, it is a good choice for space-constrained environments.
belt

Repair options for a timing belt tensioner

A timing belt tensioner is an essential part of an automobile’s timing chain and is responsible for ensuring proper timing. Proper alignment of timing marks is essential to the proper operation of the engine, and improper alignment may lead to damage to the engine. To repair a timing belt tensioner, there are several repair options available. First, you need to remove the engine cover. You can then remove the timing belt tensioner by loosening the pulley using a ratchet or breaker bar.
When the timing belt isn’t properly tensioned, the engine will misfire. The engine misfires when the valve opens and the pistons rise at the wrong time. When this happens, the timing belt cannot properly grip the gears and the engine will not function. If this part fails, you’ll have to replace the whole timing chain. However, if you are handy with tools, you can easily replace the entire timing belt tensioner yourself.
If your timing belt tensioner is out of alignment, you should replace it. If you’re not sure whether it needs to be replaced, check it with a professional and learn the details of the repair. The timing belt tensioner is the most critical part of the engine, so it’s important to know about it. Otherwise, your car won’t run as well as it could. Repair options for a timing belt tensioner will vary depending on the severity of the problem and how much damage it has done.
While there are several repair options for a timing belt tensioner, the average cost of replacement is $364 to $457, and this doesn’t take into account any tax or fee you may be charged. DIY repair methods will usually cost you $50 to $150, and you’ll likely save a lot of money in the process. However, you need to remember that you may be unable to do the job yourself because you don’t know how to use the proper tools and equipment.
While it is not difficult to replace a timing belt tensioner on your own, you should know that you’ll need to remove other parts of the engine as well as special tools to make the repair properly. This is an advanced repair job and requires a great deal of skill. If you’re new to home car repair, you may not want to attempt it yourself. There are many other options, such as hiring a mechanic.
belt

Installation instructions

While there are no universal installation instructions for belt tensioners, the manufacturer of your car may provide detailed instructions. Before attempting to replace your tensioner, read the manufacturer’s recommended procedures carefully. To install a new tensioner properly, unload the old 1 and take a picture or sketch of how the belt should be routed. Once the old tensioner is out, follow the manufacturer’s torque specifications. Make sure to unload and remove the belt from the tensioner, and follow the manufacturer’s torque specifications to install the new one.
If your car comes with a manual belt tensioner, you can follow the instructions. The manual will have a corresponding guide for installation. When installing a belt tensioner, make sure the manual clearly states the static tension for your particular model. Check that it is in line with the engine relief to ensure proper belt tension. You can then use a 6mm allen key to turn the tensioner clockwise and counterclockwise. Once it is in position, release the tensioner to operate. The belt tensioner should now apply the proper tension to your belt.
Before installing a new belt tensioner, make sure you read the manual completely. You should follow these steps carefully to avoid any problems with the tensioner. If the tensioner has failed, you must replace it immediately. A new belt tensioner will help you ensure proper performance of your accessory belt drive system. If you are installing a new multi-ribbed belt, you should replace the tensioner as well. However, it is important to note that replacing the belt tensioner is a complicated process and requires a mechanic to be able to safely remove the belt from the engine.
To install a second stage drive belt, walk the belt onto the input drive and generator. Ensure that the belt is seated properly in the grooves of the pulleys. Next, replace the input drive belt and right and left Drive Disk covers. Test the machine to ensure that it is working properly. If it doesn’t, replace the original drive belt. After installing the new belt, you may want to read the manual again to make sure it is in perfect condition.

China OEM CZPT Pulley/ Timing Belt 13077-54A00 13077-54A01 Vkm82302 U357 03.411 532011020 Qtt416 Auto Spare Parts Engine Tensioner Bearing Pulley for Nissan Ad Max Van     with Good qualityChina OEM CZPT Pulley/ Timing Belt 13077-54A00 13077-54A01 Vkm82302 U357 03.411 532011020 Qtt416 Auto Spare Parts Engine Tensioner Bearing Pulley for Nissan Ad Max Van     with Good quality

China OEM Tensioner Timing Bearing 05142798AA Vkm18601 Vkm19601 for Chrysler Voyager and Jeep Cherokee Engine Parts with Best Sales

Product Description

Quick view:

Description Tensioner timing bearing 5712798AA VKM18601 VKM19601 For CHRYSLER VOYAGER And JEEP CHEROKEE Engine parts
Material Chrome steel Gcr15, 65Mn, or 55, Aluminum
Application car makes For JEEP
For DODGE
For CHRYSLER
Size Outer: 66 mm
Width: 32 mm
Position Tension
Weight 0.5 kg
Brand SI, PPB, or customized
Packing Neutral, SI, PPB brand packing or customized
OEM/ODM service Yes
Manufacture place ZHangZhoug, China
MOQ 1 Kia
B660-12-7 Mazda
RFC6-12-7 Mazda
F801-12-7 Mazda
FE1H-12-7 Mazda
WL01-12-7 Mitsubishi
MD315265 VKM75 Mitsubishi
24410-26 Mitsubishi
MD169592 VKM75 Mitsubishi
MD115976 VKM75044 CR5073 F-554646 Mitsubishi
MD182537 VKM75064 CR5078   Mitsubishi
MD030605 VKM751 Mitsubishi
MD129355 VKM75101 CR5070   Mitsubishi
23357-32040 VKM75113 CR5071 F-124078 Hyundai
MD Mitsubishi
MD129033 VKM75130 CR5084   Mitsubishi
24450-33571 VKM75144 CR5067   Hyundai
23357-42571 VKM75601 CR5076 F-124070 Hyundai
24317-42571 VKM75612 CR5077 F-124052 Hyundai
24317-42571 VKM75612 CR5077 F-124052 Hyundai
MD352473 VKM75613 CR5171   Mitsubishi
MD329976 VKM75615 CR5172   Mitsubishi
MD320174 VKM75616 CR5137   Mitsubishi
24410-57150 VKM75621 CR5225   Hyundai
MD356509 VKM75625 CR5206   Mitsubishi
12810-71C02 VKM76 SUZUKI
12810-81401- SUZUKI
12810-86501 VKM76203 CR5101   SUZUKI
13505-87702- S ubaru
8-94472-349-
1
VKM79.1 Daewoo
13503-62030 VKM81 Toyota
13503-54571 VKM81 Toyota
13503-54030 VKM81 Toyota
13503-10571 VKM81201 CR5026 F-124073 Toyota
13503-1571 VKM81203 CR5571 F-124089 Toyota
13503-11040 VKM814 Toyota
13074-05E Nissan
13077-V7202 VKM825 Nissan
FS01-12-730A VKM84 Mazda
FE1H-12-730A VKM846 Mazda
OK972-12-730 VKM84601 CR5055   Kia
24810-33571 VKM85 I suzu
9281571212   CR3395 F-22 Fiat / Lancia
57119243L VKM11107 CR3467 F-55571 Audi / VW
1112571119 VKM23063S CR1458 F-220122 Mercedes Benz
    CR3416   PSA
7784613   CR1440P F-123753 Fiat / Lancia
    CR1452P   Fiat / Lancia
601257170   CR1477 F-220124 Mercedes Benz
    CR1478    
    CR1480   O pel / GM
    CR1480P   O pel / GM
715713   CR1481   FORD
    CR1484   Fiat / Lancia
90324097   CR1486 F-225717 O pel / GM
    CR1497   Fiat / Lancia
    CR1498   Fiat / Lancia
    CR1499   FORD
7301662   CR1647 F-88019.2 Fiat / Lancia
11281731220   CR3571 F-225569 BMW
11281731838   CR3571 F-225633 BMW
XS4Q6B217AD   CR3102 F-143 FORD
6682571419   CR3118   Mercedes Benz
668257171   CR3119   Mercedes Benz
9635638380   CR3218 F-123183.18 R enault
46547564   CR3270   Fiat / Lancia
5 Fiat / Lancia
96036288   CR3276 F-120676 PSA
962 PSA
  CR3296 F-123788 PSA

ZheJiang Mighty (SI Bearing)are providing deep groove ball bearing, tapered roller bearing, pillow block bearing, spherical roller bearing, angular contact ball bearing, needle bearing, self-aligning ball bearing, linear bearing, wheel hub bearing, hub unit, clutch release bearing, belt tensioner, etc.

Our Bearing Advantage:
1.Free Sample bearing
2.ISO certified
3.Bearing Small order accepted
4.In Stock bearing
5.OEM bearing service
6.Professional: Over 20 years manufacture bearing
7.Customized bearing, Customer’s bearing drawing or samples accepted
8.Competitive price
9.TT Payment, Paypal, Alibaba payment, Trade Assurance Order

FAQ:
Q: Can you help with my own brand?
  A: Sure. We can make for your brands. We can mark your brand name and use your box’s design with the legal authority letter.

Q: How can I make an inquiry?
A: You can contact us by email, telephone, WhatsApp, , etc.
 

Q: How long can reply inquiry?

A: Within 24 hours.

Q: Which Service you can provide?
A: 1. Help customers to choose correct bearing
     2. Professional team, make your purchase easily

Q: When are you going to deliver?
A: Sample: 5-15 business days after payment is confirmed.
Bulk order:15-60 workdays after deposit received…

Q: What’s your delivery way?
A: By sea, by air, by train, express as your need.

Q: What are your terms of delivery?
A: EXW, FOB, CFR, CIF, DAP, etc.

Q: Can you support the sample order?
A: Yes, we can supply the sample if we have parts in stock, but the customer has to pay the sample payment(according to the value of the samples) and the shipping cost.

Q: What are you going to do if there has a claim for the quality or quantity missing?
A: 1. For quality, during the warranty period, if any claim for it, we shall help customer to find out what’s the exactly problem. Using by mistake, installation problem, or poor quality? Once it’s due to the poor quality, we will arrange the new products to customers.
2. For missing quantities, there have 2 weeks for claiming the missing ones after receiving the goods. We shall help to find out where it is.
 
 

Choosing a V-Belt

When choosing a v-belt, you should understand the characteristics of each type and how they affect the performance of your machine. Listed below are the characteristics of Cogged, Narrow profile, and wide v-belts. Learn about the advantages and disadvantages of each. Choose the right v-belt for your machine to maximize its performance. Learn about the different materials used to make v-belts and how they influence the performance of your machine.
belt

Narrow v-belts

While the flat belts are the most common type of v-belt, narrow v-belts are also a common option for industrial applications. These belts are similar to wedge belts in that they transmit heavier loads, but in a smaller form. Narrow v-belts are typically designated as 3V, 5V, and 8V and are denoted by their top width, multiplied by an eighth of an inch. Narrow v-belt sections conform to a wedge belt profile and are usually standardized by manufacturers. For example, section 3V corresponds to a wedge-type profile, while section 5V corresponds to SPB.
Both narrow and conventional v-belts are made of rubber stocks, which are generally composed of polymer or synthetic rubber. Fabric materials may be used to cover the stock material, adding a layer of reinforcement and protection. Narrow v-belts have a higher power rating than traditional V-belts. This is due to their greater depth-to-width ratio, which puts more of the reinforcing cord beneath the sheave.
The Wedge TLP ™ Narrow V-belt from Continental features a homogeneous one-piece design for maximum strength and long-term performance. These belts feature a high-denier cord and can handle significant horsepower increases. These belts are ideal for industrial applications. However, they are not as durable as their wider counterparts. The Wedge TLP is also an excellent choice for heavy-duty industrial applications.

Cogged v-belts

A key benefit of cogged v-belts is their ability to increase power output without sacrificing reliability. These belts are designed with precision-engineered cogs, which allow them to fit into smaller pulleys without reducing power output. Their raw-edge sidewalls and specially formulated EPDM rubber compound also help provide grip power. Cogged v-belts are manufactured by Carlisle(r) and offer several advantages over conventional belts.
The performance benefits of Cogged V-Belts are widely acknowledged. The company uses added-strength EPDM compounds in their belts to help reduce downtime and energy consumption. They are ideal for demanding applications such as power transmission. These belts are available in a variety of sizes and cross-sections. The section number of Cogged v-belts is H3V, H4V, and H5V.
The main difference between cogged v-belts and wedge belts is in the contact angle. While wedge and cogged v-belts have the same contact angle, the design and construction differs. Cogged v-belts typically include top and bottom layers of rubber, dampening rubber, tension cords, and top and bottom metal rings. Polychloroprene and polyester cords are common materials for the top and bottom layers, while aramid fibers are used for punishing applications.
Cogged v-belts are more flexible than traditional v-belts. Because of the slots on the belt surface, they reduce bending resistance. They are compatible with the same pulleys as standard v-belts, and run cooler and longer. They are also more efficient than standard V-belts. If you are considering a cogged V-belt for your application, it may be worth it to investigate the benefits of this belt type.
belt

Wide v-belts

Variable-speed v-belts are wider in cross section than classical v-belts. The design of variable-speed v-belts varies depending on the manufacturer, but generally features a parallel top and bottom surface. This type of v-belt wedges tightly into its pulley’s grooves, reducing power loss and slippage. This type of v-belt is best suited to applications where speed changes frequently.
High-performance Wide V-belts feature a fibre-reinforced EPDM rubber base. The resulting supercharged EPDM mix is better suited for applications where the belts are subject to higher temperatures. This type of drive belt can also replace existing drives with ease and efficiency. CZPT offers a wide range of drive belts for all applications. For applications where slack is an issue, wrapped V-belts are a smart choice.
Narrow-V-belts, on the other hand, have a more favorable height-to-width ratio. This means that a narrow-V belt can be smaller while still providing the same power transmission. These belts also have a lower mass, which reduces centrifugal forces and enables higher speeds. However, narrow-V-belts are prone to wear, but are still a popular choice in many applications.
In addition to being more durable, wrapped-V-belts have fabric-coated edges for better heat resistance. The material covering wrapped-V-belts also protects them from damage from friction and external contaminants. Unlike their rigid counterparts, these wide-V-belts have an improved lifespan and require less maintenance and downtime. These are excellent alternatives to conventional v-belts. So, what are the benefits of Wide-V-belts?

Narrow profile v-belts

When it comes to choosing the best V-belt for your needs, it is important to understand the differences between narrow profile and classical. Narrow profile V-belts are generally narrower in cross-section than classical v-belts. This makes them ideal for high-speed compact drives and light-duty applications. The following section details the differences between narrow and classical v-belts.
The tensile cords, or “cords,” are embedded into the rubber compound. These cords are the main power-transmitting component of a narrow profile v-belt. The tension cords are located at the pitch diameter of the belt cross-section and increase the tensile strength. They are typically made of steel, aramid fibers, or polyester. The core is usually made of polyurethane, but other materials can be used.
When measuring the v-belt’s width, it is important to understand the various sign-codes. Some v-belts have the wrong sign-coding schema. For example, a classical profile belt should be read as Lw = 3522 mm, while a narrow profile belt should be read as La=3553mm. A narrow profile v-belt has a steeper side-wall, which increases the wedging action. Moreover, the narrow profile v-belt has higher load capacity.
Despite their name, narrow profile v-belts are the most widely used and versatile type of v-belts. They are also the easiest to install. Their general size is similar to that of a wedge, and their number is derived from their numerical prefix. A narrow profile v-belt with a 3L300 part number is 3/8″ wide and 300.0 inches long.

Wide profile v-belts

Wide profile v-belts are designed for heavy-duty applications where extreme performance is required. They are ideal for such applications due to their high-flexural strength and shock-resistance. They also come with many benefits, including good noise-reduction, increased sturdiness, and easy maintenance. This article explores the features of wide profile v-belts and how they can benefit your business.
Classical v-belts have an internal dimensional metric marking called the “CZPT.” This identifies each specific belt. Generally, this number is a combination of the normal profile size designation letter and the internal length in inches. The inside length of the v-belt is indicated on the index of the v-belt. To begin installing the v-belt, mark the floor where it will be hung. Tape the end stop marker to the first stick.
Narrow v-belts are narrower than standard wide v-belts. They are also available in raw-edge cogged profiles and are intended for light-duty applications. Narrow V-belts are also available in 4 sizes. Compared to standard wide profile v-belts, narrow v-belts are most appropriate for high-speed, compact drives. However, wide profile v-belts are generally longer than narrow V-belts.
A v-belt is composed of different types of rubber and reinforcements. It undergoes tensile and compressive stresses on both sides. The top side of a v-belt experiences longitudinal tensile force, while the bottom side is subjected to compression against a pulley. Moreover, the included angle of a v-belt section is 40 deg. Various types of v-belts are available according to their cross-sections and performance specifications.
belt

Standard v-belts

If you are installing v-belts, you must know the right way to measure them. Many v-belts are mislabelled as classic or SPA. If you are unsure of which 1 to choose, you can refer to the standard v-belts index. The basic way to measure v-belts is by using a measuring tape or a cable tie. Using the right technique will ensure you get the right length.
A well-engineered V-belt is made from an elastomer core, which is a material that is resistant to abrasion. The elastomer core is usually composed of polyurethane, which has excellent flexural strength and shock resistance. In addition to the elastomer core, a fabric cover protects the core from wear and environmental forces. Its fabric cover is treated to form a chemical bond with the belt core, which increases the fabric’s resistance to constant bending.
The cross-section of a standard V-belt is commonly described as a trapezium, with its top and bottom sides parallel. Knowing the cross-section of a standard V-belt is essential in matching it with a pulley. It is also important to know how the v-belt is positioned on a pulley and how to select the right belt for the job.

China OEM Tensioner Timing Bearing 05142798AA Vkm18601 Vkm19601 for Chrysler Voyager and Jeep Cherokee Engine Parts     with Best SalesChina OEM Tensioner Timing Bearing 05142798AA Vkm18601 Vkm19601 for Chrysler Voyager and Jeep Cherokee Engine Parts     with Best Sales

China Hot selling Car Auto Engine Parts 24410-27000 24410-27250 531084310 Vkm75628 Timing Belt Tensioner Bearing Complete with Holder for Hyundai KIA near me manufacturer

Product Description

Quick view:

Name Car Auto Engine Parts 24410-27 Audi/ VW
68,109,243 VKM11571 CR1682 F-9 S-koda
571109243G VKM11015 CR1676 F-234390 Audi/ VW
51,109,243 VKM11571 CR1863 F-22 Audi/ VW
074109243R VKM11072 CR1889 F-234389 Audi/ VW
57119243C VKM11105 CR1805 F-234396 Audi/ VW
57119243K VKM11106 CR1892 F-232489 Audi/ VW
06A109479C VKM11113 CR3140 F-123814 Audi/ VW
06B109243D VKM11116 CR3139   Audi/ VW
036109243R VKM11120 CR3146 F-231221.1 Audi/ VW
038109243H VKM11130 CR3176   Audi/ VW
078109243C VKM112 Audi/ VW
078109243K VKM11201 CR1642   Audi/ VW
4443703 VKM12 Fiat Lancia
4386575 VKM12 Fiat Lancia
608 Alfa Romeo
4443446 VKM12012 CR1662   Fiat Lancia
4385583 VKM121 Fiat Lancia
5997325 VKM12101 CR1646 F-225717 Alfa Romeo
432 0571 VKM12103 CR1661 F-123635 Fiat Lancia
7553564 VKM12151 CR1644 F-123636 Fiat Lancia
7609213 VKM12153 CR1854   Fiat Lancia
5966.1 Fiat Lancia
7772961 VKM12172 CR3014   Fiat Lancia

ZheJiang Mighty (SI Bearing)are providing deep groove ball bearing, tapered roller bearing, pillow block bearing, spherical roller bearing, angular contact ball bearing, needle bearing, self-aligning ball bearing, linear bearing, wheel hub bearing, hub unit, clutch release bearing, belt tensioner, etc.

Our Bearing Advantage:
1.Free Sample bearing
2.ISO certified
3.Bearing Small order accepted
4.In Stock bearing
5.OEM bearing service
6.Professional: Over 20 years manufacture bearing
7.Customized bearing, Customer’s bearing drawing or samples accepted
8.Competitive price
9.TT Payment, Paypal, Alibaba payment, Trade Assurance Order

FAQ:
Q: Can you help with my own brand?
  A: Sure. We can make for your brands. We can mark your brand name and use your box’s design with the legal authority letter.

Q: How can I make an inquiry?
A: You can contact us by email, telephone, WhatsApp, , etc.
 

Q: How long can reply inquiry?

A: Within 24 hours.

Q: Which Service you can provide?
A: 1. Help customers to choose correct bearing
     2. Professional team, make your purchase easily

Q: When are you going to deliver?
A: Sample: 5-15 business days after payment is confirmed.
Bulk order:15-60 workdays after deposit received…

Q: What’s your delivery way?
A: By sea, by air, by train, express as your need.

Q: What are your terms of delivery?
A: EXW, FOB, CFR, CIF, DAP, etc.

Q: Can you support the sample order?
A: Yes, we can supply the sample if we have parts in stock, but the customer has to pay the sample payment(according to the value of the samples) and the shipping cost.

Q: What are you going to do if there has a claim for the quality or quantity missing?
A: 1. For quality, during the warranty period, if any claim for it, we shall help customer to find out what’s the exactly problem. Using by mistake, installation problem, or poor quality? Once it’s due to the poor quality, we will arrange the new products to customers.
2. For missing quantities, there have 2 weeks for claiming the missing ones after receiving the goods. We shall help to find out where it is.
 
 

Choosing a V-Belt

When choosing a v-belt, you should understand the characteristics of each type and how they affect the performance of your machine. Listed below are the characteristics of Cogged, Narrow profile, and wide v-belts. Learn about the advantages and disadvantages of each. Choose the right v-belt for your machine to maximize its performance. Learn about the different materials used to make v-belts and how they influence the performance of your machine.
belt

Narrow v-belts

While the flat belts are the most common type of v-belt, narrow v-belts are also a common option for industrial applications. These belts are similar to wedge belts in that they transmit heavier loads, but in a smaller form. Narrow v-belts are typically designated as 3V, 5V, and 8V and are denoted by their top width, multiplied by an eighth of an inch. Narrow v-belt sections conform to a wedge belt profile and are usually standardized by manufacturers. For example, section 3V corresponds to a wedge-type profile, while section 5V corresponds to SPB.
Both narrow and conventional v-belts are made of rubber stocks, which are generally composed of polymer or synthetic rubber. Fabric materials may be used to cover the stock material, adding a layer of reinforcement and protection. Narrow v-belts have a higher power rating than traditional V-belts. This is due to their greater depth-to-width ratio, which puts more of the reinforcing cord beneath the sheave.
The Wedge TLP ™ Narrow V-belt from Continental features a homogeneous one-piece design for maximum strength and long-term performance. These belts feature a high-denier cord and can handle significant horsepower increases. These belts are ideal for industrial applications. However, they are not as durable as their wider counterparts. The Wedge TLP is also an excellent choice for heavy-duty industrial applications.

Cogged v-belts

A key benefit of cogged v-belts is their ability to increase power output without sacrificing reliability. These belts are designed with precision-engineered cogs, which allow them to fit into smaller pulleys without reducing power output. Their raw-edge sidewalls and specially formulated EPDM rubber compound also help provide grip power. Cogged v-belts are manufactured by Carlisle(r) and offer several advantages over conventional belts.
The performance benefits of Cogged V-Belts are widely acknowledged. The company uses added-strength EPDM compounds in their belts to help reduce downtime and energy consumption. They are ideal for demanding applications such as power transmission. These belts are available in a variety of sizes and cross-sections. The section number of Cogged v-belts is H3V, H4V, and H5V.
The main difference between cogged v-belts and wedge belts is in the contact angle. While wedge and cogged v-belts have the same contact angle, the design and construction differs. Cogged v-belts typically include top and bottom layers of rubber, dampening rubber, tension cords, and top and bottom metal rings. Polychloroprene and polyester cords are common materials for the top and bottom layers, while aramid fibers are used for punishing applications.
Cogged v-belts are more flexible than traditional v-belts. Because of the slots on the belt surface, they reduce bending resistance. They are compatible with the same pulleys as standard v-belts, and run cooler and longer. They are also more efficient than standard V-belts. If you are considering a cogged V-belt for your application, it may be worth it to investigate the benefits of this belt type.
belt

Wide v-belts

Variable-speed v-belts are wider in cross section than classical v-belts. The design of variable-speed v-belts varies depending on the manufacturer, but generally features a parallel top and bottom surface. This type of v-belt wedges tightly into its pulley’s grooves, reducing power loss and slippage. This type of v-belt is best suited to applications where speed changes frequently.
High-performance Wide V-belts feature a fibre-reinforced EPDM rubber base. The resulting supercharged EPDM mix is better suited for applications where the belts are subject to higher temperatures. This type of drive belt can also replace existing drives with ease and efficiency. CZPT offers a wide range of drive belts for all applications. For applications where slack is an issue, wrapped V-belts are a smart choice.
Narrow-V-belts, on the other hand, have a more favorable height-to-width ratio. This means that a narrow-V belt can be smaller while still providing the same power transmission. These belts also have a lower mass, which reduces centrifugal forces and enables higher speeds. However, narrow-V-belts are prone to wear, but are still a popular choice in many applications.
In addition to being more durable, wrapped-V-belts have fabric-coated edges for better heat resistance. The material covering wrapped-V-belts also protects them from damage from friction and external contaminants. Unlike their rigid counterparts, these wide-V-belts have an improved lifespan and require less maintenance and downtime. These are excellent alternatives to conventional v-belts. So, what are the benefits of Wide-V-belts?

Narrow profile v-belts

When it comes to choosing the best V-belt for your needs, it is important to understand the differences between narrow profile and classical. Narrow profile V-belts are generally narrower in cross-section than classical v-belts. This makes them ideal for high-speed compact drives and light-duty applications. The following section details the differences between narrow and classical v-belts.
The tensile cords, or “cords,” are embedded into the rubber compound. These cords are the main power-transmitting component of a narrow profile v-belt. The tension cords are located at the pitch diameter of the belt cross-section and increase the tensile strength. They are typically made of steel, aramid fibers, or polyester. The core is usually made of polyurethane, but other materials can be used.
When measuring the v-belt’s width, it is important to understand the various sign-codes. Some v-belts have the wrong sign-coding schema. For example, a classical profile belt should be read as Lw = 3522 mm, while a narrow profile belt should be read as La=3553mm. A narrow profile v-belt has a steeper side-wall, which increases the wedging action. Moreover, the narrow profile v-belt has higher load capacity.
Despite their name, narrow profile v-belts are the most widely used and versatile type of v-belts. They are also the easiest to install. Their general size is similar to that of a wedge, and their number is derived from their numerical prefix. A narrow profile v-belt with a 3L300 part number is 3/8″ wide and 300.0 inches long.

Wide profile v-belts

Wide profile v-belts are designed for heavy-duty applications where extreme performance is required. They are ideal for such applications due to their high-flexural strength and shock-resistance. They also come with many benefits, including good noise-reduction, increased sturdiness, and easy maintenance. This article explores the features of wide profile v-belts and how they can benefit your business.
Classical v-belts have an internal dimensional metric marking called the “CZPT.” This identifies each specific belt. Generally, this number is a combination of the normal profile size designation letter and the internal length in inches. The inside length of the v-belt is indicated on the index of the v-belt. To begin installing the v-belt, mark the floor where it will be hung. Tape the end stop marker to the first stick.
Narrow v-belts are narrower than standard wide v-belts. They are also available in raw-edge cogged profiles and are intended for light-duty applications. Narrow V-belts are also available in 4 sizes. Compared to standard wide profile v-belts, narrow v-belts are most appropriate for high-speed, compact drives. However, wide profile v-belts are generally longer than narrow V-belts.
A v-belt is composed of different types of rubber and reinforcements. It undergoes tensile and compressive stresses on both sides. The top side of a v-belt experiences longitudinal tensile force, while the bottom side is subjected to compression against a pulley. Moreover, the included angle of a v-belt section is 40 deg. Various types of v-belts are available according to their cross-sections and performance specifications.
belt

Standard v-belts

If you are installing v-belts, you must know the right way to measure them. Many v-belts are mislabelled as classic or SPA. If you are unsure of which 1 to choose, you can refer to the standard v-belts index. The basic way to measure v-belts is by using a measuring tape or a cable tie. Using the right technique will ensure you get the right length.
A well-engineered V-belt is made from an elastomer core, which is a material that is resistant to abrasion. The elastomer core is usually composed of polyurethane, which has excellent flexural strength and shock resistance. In addition to the elastomer core, a fabric cover protects the core from wear and environmental forces. Its fabric cover is treated to form a chemical bond with the belt core, which increases the fabric’s resistance to constant bending.
The cross-section of a standard V-belt is commonly described as a trapezium, with its top and bottom sides parallel. Knowing the cross-section of a standard V-belt is essential in matching it with a pulley. It is also important to know how the v-belt is positioned on a pulley and how to select the right belt for the job.

China Hot selling Car Auto Engine Parts 24410-27000 24410-27250 531084310 Vkm75628 Timing Belt Tensioner Bearing Complete with Holder for Hyundai KIA     near me manufacturer China Hot selling Car Auto Engine Parts 24410-27000 24410-27250 531084310 Vkm75628 Timing Belt Tensioner Bearing Complete with Holder for Hyundai KIA     near me manufacturer